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PART I

CHAPTER I

INTRODUCTION

This report describes modeling of imploding plasma radi-

ation sources (at various levels of description) during the

contract year 1982. The report is divided into two parts.

Part I describes zero-D models, which use ordinary differen-

tial equations (and their numerical or approximate analyti-

cal solution) to describe the dynamics and radiation from

imploding wire or gas-puff plasma, with the approximation

that the plasmas are uniform. For completeness, Part I also

includes a preliminary description of some results actually
' 1 -

obtained at the beginning of the 1983 contract year.

These refer to first-order nonadiabatic corrections to for-

mulas for radiation from quasi-adiabatic pinch plasmas.

Part I concludes with a report on analysis of a 1D ide-

alized model for nonlinear field penetration into profile-

invariant plasma where the conductivity (i.e., field diffu-

sion rate) depends on field strength through Joule heating,

etc.

Part II describes 1D MHD modeling (or more exactly, EMHD

modeling, since the electric field E, rather than magnetic

field, is explicitly advanced in the code), with related

discoveries about the nonlinear physics and the numerical

techniques for advancing the variables. Much of this code

1. The contract reported on here and NRL Contract N00173-
80-C-0202 have been merged into one new contract,
DNA001-83-C-0204 covering 02-03-83 to 03-31-84.

.. 3
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-. development has been carried out so as to be directly usable

in 2D as well, although the 2D r-z code is not yet near

-; completion.

The purpose of the formulations described in Part I is

- to provide semi-quantitative insight and understanding into

- ~1 the behavior and scaling of plasma radiation source behav-

ior, using simplified model assumptions. The purpose of the

code and physics described in Part II is to compute quanti.-

:-9. tatively the behavior of plasma radiation sources with ade-

quate cylindrical symmetry and to provide the refinements

and modifications to the simpler less quantitative scaling

laws discussed in Part I, including now (e.g.,) the radial

profiles and more detailed radiation transport which are

- omitted in Part I for simplicity.

A simple "scoping" code is discussed in Chapter II of

Part I. In this code called RUNIN, the plasma motion, heat-

ing and current are described by a set of ordinary differen-

tial equations. The code follows three (or two) successive

stages in the evolution of a wire array (or annular gas

puff) discharge: the motion and expansion of individual

wire plasmas until coalescence to an annulus, the motion of

the annular plasma (with finite, time-dependent thickness,

,. ' radius and temperature) until formation of a non-hollow

pinch, and the compression of the assembled pinch once the

annulus closes. In each stage the model plasma has uniform
density and temperature. Radiation from the wire plasmas is

assumed to be blackbody. The annular and pinch phases use

blackbody-limited otherwise-transparent radiative cooling

rates based on collisional-radiative equilibrium calcula-

tions without doing radiative transport. The physical basis

of the code was discussed in JAYCOR Report J207-82-009

'l -'. •4
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Simple scaling laws are derived in Chapter III of Part I

for the radiation from a quasi-adiabatically bouncing pinch,

in which the radiative loss is a small fraction of the peak

thermal energy. The dynamics of the wire-plasma and annular

phases are also discussed, with some formulas given to de-

scribe initial conditions for the pinch phase. The scaling

laws are used on uniform, optically-thin pinch plasma mod-

els, and corroborate I dependence of the energetic radiated

energy (as observed at Physics International) over a limited

range of currents and plasma masses, (I-current through the

plasma). A first-order correction to the minimum radius and

maximum temperature of the implosion is also given, for

small but non-negligible radiative energy loss dominated by

energetic, transparent radiation. Caveats to the model are

described.

A simple model for the nonlinear penetration of electric

field into a finite plasma is discussed in Chapter IV of

Part I, in which the conductivity (and thus the diffusion

coefficient) is altered locally in time and space by heating

and ionization induced by the diffusing field. A ID comput-

er simulation is described, but it is concluded that the

restrictions on the model are too severe to accurately por-

tray the realities of field penetration in imploding annular

plasmas, and the reader is referred to the more advanced

computational results of Part II.

This effort is intended to be primarily in support of

the DNA objectives of understanding and projecting an ap-

proximate scaling of plasma radiation sources. An explicit

tie-in with radiation physics work funded by DNA at the

Naval Research Laboratory (NRL) can be seen from the central

I
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role played in this analysis by the curve of energetic-pho-

ton radiative power as a function of plasma electron temper-

ature (it also depends weakly on plasma density and photon

density) - such curves are supplied by the NRL effort. Less

visible in this simplified analysis, but also important in

the more quantitative calculations enabled by Part II of

this report, are the effects of radiation transport on the

energetics and the radial profiles of temperature, etc., in

imploding plasmas. Here again there is interaction with the

plasma radiation physics work at NRL, both in the use of

, transport algorithms developed at NRL, and in supplying NRL

with reasonable implosion density and temperature histories

for post-processing of emission spectral histories, etc.

- -The RUNIN scoping code described in Part I of this report

has been supplied to NRL, to use in conjunction with rts

more extensive radiation physics codes as an inexpensive,

approximate time-evolution package for densities 3nd tesper-

atures during implosions.

Formulas are given for energetic radiative yield (Y ) as

dependent on load mass (m) and length (1), experimentally

measurable current in the load (1), kinetic energy at the

beginning of the assembled pinch phase (e,), and atomic

physics parameters, such as the temperature (Tp) at which
pk

the energetic radiation is maximized.

By choosing either the load mass per unit length or the

current so as to optimize Y one derives a formula for

scaling of optimal energetic yield with load current I, in

the adiabatic limit where the radiative energy loss has only

a very small effect on the dynamics. Subject to the caveats

described in the report, we verify the scalingr>
6
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found by earlier, more empirical work at Physics Interna-

tional.

We also show, to first order, how this scaling of Y"

were I falls below I' at higher currents, due to the effects

of radiation in reducing the peak attainable temperature for

any given pinch initial conditions. Here 'first order'

refers to the quantity Y(r )/(thermal energy), Y(r ) beingm m
the total radiative energy (energetic + less energetic pho-

tons) lost between onset of the assembled pinch phase and

the time of minimum radius r (i.e., peak compression).

4m
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CHAPTER II

DEVELOPMENT OF THE RUNIN CODE

For the assessment of Plasma Radiation Source design

feasibility, it is important to have an approximate scoping

model that predicts implosion histories and scaling of radi-

ative output with the appropriate input design parameters.

To this end the RUNIN code has been written, incorporating

(with modifications) the SAI "WIRES" Code describing the

dynamics of an imploding array of wires, the JAYCOR

"SQUEEZE" Code describing the dynamics and energetics of a

pinching cylindrical plasma (with radiation the CRE ioniza-

tion), and a "BRIDGE" code describing the intermediate annu-

lar plasma stage. For use in gas puff plasma modeling, the

code can be started in the BRIDGE phase. This RUNIN code

* has been written, documented, run and debugged. It can also

serve as the nucleus of a variational design optimization

code

A WIRES: EQUATIONS FOR THE IMPLOSION OF THE WIRE ARRAY -

MODIFICATIONS AND UNDERLYING ASSUMPTIONS

S. The equations governing the wire-plasma radius a

(its thickness, not its position) in the SAI WIRES code was

equivalent to the assumption that the radius has that value

which gives pressure balance between the thermal pressure of

the wire and the magnetic pressure of its field. The tem-

perature is determined by assuming that the 2wata T4 black-
B

. body radiative cooling exactly balances the 12 R n, 2 ira
N

,Ji
.. .
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ohmic heating (based on full field penetration of the

'wire'). Here aB is the Stefan-Boltzman constant, 2ra is

the surface area of a wire carrying current IN over cross-

sectional area a 2 with resistivity n (resistance R). We

have demonstrated that this gives instantaneously quite fat

'wires' at early times if I is large and T small. Since the

expansion rate of the wires is limited by one or a few

times the instantaneous sound speed, we have limited the

radius to a. + fs (t)dt when this is less than the pressure-

balance radius. Besides being more physically correct, this

prevents the code from merging the wires into an annular

plasma at very early times before they could have merged

physically.

2. When the N wires with centers at radius r do fi-

nally merge, i.e., when

r sin - a 1II.I]
a N

(the tangency condition for a circular array of N circles of

radius a), they are replaced by an annular layer (with outer

radius r, and inner radius r,) which has the same area as

the collection of wires

(r 2 r) - Nira [II.2"

,.4.

and has a geometric mean radius equal to the radius of cen-
ters of the wires: r1r, = r The new velocity of the

c
outer surface r,, is given by conservation of kinetic energy

in the transition.

The use of the notation r, for the outer radius and r.

for the inner radius of the resulting annulus is intended

to conform (at least in subscripts) to the notation of the

RUNIN code, in which y, and y. are the outer and inner radii

9 ,'.. °

% %'
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respectively. The code announces the merge (both on the

terminal and in the output data file) and proceeds to the

integration of equations of motion for a uniform annular

plasma, using a high-precision package integration routine.

The magnetic field energy in the WIRES code includes a

contribution from positions inside the wire array. This is

physical, but should go to zero as the wires merge to an

annulus, even if the approximate equations of the WIRES code

break down when the wires are close together. In the RUNIN

code we have taken this contribution zero as soon as the

wires merge.

Consistent with the assumption of complete field pene-

tration of the individual wires, we have assumed uniform

current density in the annular layer when it comes to calcu-

lating energy density integrals, but we have assumed in the

force equations that all the J x B force is applied to the

outer surface. In fact, a real physical difference between

wire array implosions and foil or annular gas puff implo-

sions may be that for wire array implosions the field pene-

tration is fairly complete early in the wires phase and

continues to be fairly complete after merging to an annulus,

while in foil or gas puff implosions the current may be

restricted to a relatively thin layer near the outer surface

of the annulus. The full ID MHD code described [elsewhere

in this report] is capable of estimating the degree of field

penetration into foils or gas puff annuli, and of showing

the sensitivity of the implosion dynamics to the degree of

penetration, whereas the simpler model presented in this

section cannot investigate that question consistently. The

actual field penetration is discussed in more detail in

Chapter II of Part II of this report.

L. 10
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B. BRIDGE: EQUATIONS FOR THE UNIFORM ANNULAR PLASMA IMPLO-

SION

The equations of motion of the annular plasma result

from performing fdr on the fluid equation and assuming that

the density gradient an/ar remains zero except at the plasma

edges. This latter assumption, equivalent to a/ar(V-v) - 0,

requires v(r) of the form
-1-

v(r) - k~r + kar [II.31

and the conditions v(r1 ) vr, V(rs)-r s give equations for

kl(r , 1 , r., ) and k 2(r , ( r , r., r w

1 * rk r 1 y l rr - -- r [1.4]

r I 1k2 /r5  - r 1 + *j-;:* 5 CI [I1.5]

Here r=r,/r,, the ratio of inner to outer radius, which is

of course time-dependent (as are k, and k2). In the inte-
2

grated force equation (Tidman and Colombant, 1979) one has

then

r v dv 1 2 2
Lr at +fr, v.Vvdr - (r, - r,)+k 2 n(r ,/r,)

1 *;2 _.2+"r 1- - r) ..63

The internal viscous stress tensor the the velocity

field of Equation 111.3] is divergenceless, so that all the

force comes from the thermal and magnetic pressure gradi-

A ents. For the net force we have
B2 (r,)

r , V Pd r - (n + 8I
r. e +n)T-- £17

A with B(r,) - 21/cr, (in cgs units).

%"
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It will be seen that if the velocity of the inner sur-

face remains finite as it collapses to the origin, then the

Ln term in Equation [11.6] is singular as rs -j. 0. It is

thus a mathematical feature of these approximate equations

that a finite excess pressure from the outside causes is to

take on a momentarily infinite negative value as r. - 0.

This lasts for zero duration and causes no physicl discrep-

ancy because the singularity is integrable and r remains

finite. It does, however, mean that the numerical integra-

tion of the equations must be done cleverly and approxi-

mately near the time of transition from annulus to plasma

cylinder. Since the integrating routine used (DGEAR)

shrinks its timestep when it finds larger accelerations,

'ij is arbitrarily limited to a reasonable value (10 7 cm/

sec) and the equations are carried forward approximately

for the remaining short (sub-nanosecond) time until r. 0.

C. NUMERICAL INTEGRATOR PACKAGE

While the WIRES subroutine calls a simple fixed-step

integrator subroutine (the same as in the original SAI WIRES

code), the BRIDGE and SQUEEZE subroutines use the IMSL Li-

brary DGEAR package, a variable-timestep predictor-corrector

integration routine designed for use with sets of stiff
3differential equations . An override and exit is provided

when doing the integrations in the BRIDGE phase, so that the

inner radius Coes to zero within some tolerance (10- 6cm)

without going negative or shrinking the timestep

indefinitely.

1.2| -. -..-[.% ol',
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D. RADIATIVE LOSS AND OUTPUT TERMS FOR THE ANNULAR AND

CYLINDRICAL PHASES

1. Temperature Dependence

While the use of blackbody emission is thought to be a

good approximation in the WIRES phase of implosion because

the temperatures are low, we have changed over in the annu-

lar BRIDGE phase and in the cylindrical SQUEEZE phase of the

code to more sophisticated radiative output functions,

although at present the radiation cooling and output formu-

lae are based on transparency of the plasma to its energeti-

cally most important radiation. The collisional-radiative

equilibrium (CRE) model is the basis for an emitted power

per ion-electron pair, Frad , modeled in detail by Duston et
rad-

al. . A Gaussian-spline fit to these results was obtained
r5

by Terry and this fit, incorporated in subroutine CREMIT,

is used in the code for the emitted power. This is overrid-

den by the blackbody emission if that limit is exceeded. At

present there is no absorbed radiation per se. A similar

calculation is done for the line radiation power above a

critical photon energy EST' usually taken to be 1 keV.

2. Correction for Nonuniform Temperature and Density

The plasma in a real implosion is not isothermal or iso-

density, and is not fully transparent to its radiation. So

the radiative loss term is not simply

p 1(r - rls)L. ' Z(T) F (T) CII.83
.rad n- rad

with average ionization state Z(T) but rather:

13
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Prad 1 tf2rdr n'(r) Z{T(r)} F radT(r)} [II.9]

in the optically thin limit,

prad - 2 trZ, BTff 4[II.10)

in the blackbody limit, and not expressible in closed form

except in these limits.

Yet a simplified implosion model, to be useful and show

correct trends, must include in some approximate way an

average radiation function with about the same magnitude and

dependence as the more exact problems, i.e., a suitable set

of parameters ni (0), rn, T(O), rT, T(-) must be chosen,

representing the heights and widths for the ni(r) and T(r)

distributions, and a function Rad(r,, r$, T) must be con-

structed, so that

.rt(rl - r') n2Z(Y)Rad(r1 , r,, T) - Prad [II.11)

for suitable n In (0), r n, TIT(O), T(-), r T. The proper

choice of such parameters and suitable distributions for

density and temperature are being investigated using the

BLANKET code.

For the radiative output above 1 keV the effect of non-

isothermal temperature profiles in the assembling plasma is

indicated semiquantitatively by using the transparent CRE

model with Gaussian-plus-constant temperature profiles in a

Gaussian density profile. Figure II.1 shows the ratio of

radiated power above 1 keV for this distribution, in alumi-

• jnum, to that for an isothermal aluminum plasma with the same

Gaussian density profile, as a function of the relative

width (r ) of the temperature profile. The temperature

distributions are chosen in this case to have the same cen-

tral temperature, and the temperature of the cooler outer

114
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Figure 11.1. Ratio of radiated power above 1 key for Gaussian-plus-constant

temperature distribution to that from a uniform temperature a

distribution. Both distributions are assumed for plasma cyl-

inder with Gaussian density profiles of unit width, and the

parameter r T measures the relative width of the temperature

distribution (r T=0 for isothermal limit).

15

1 15 .

-" a. - ** * * /. -.' . - * . . .. .

-.- 0. / .j .-. .



, ?

region is varied as a parameter. For use with the RUNIN

code, where the energetics are described by a single temper-

ature, comparisons are made with the same average tempera-

ture rather than with the same central temperature.

E. CAVEATS TO THE RUNIN CODE

The code described above models the dynamics of uniform

plasma, either as (1) identical symmetrically-placed wire

plasmas of circular cross section with forces acting at

their centers, or (2) as an annulus of uniform density with

force acting on the outer surface and model equations for

the motion of the inner radius, or (3) as a uniform z-pinch

driven at its outer surface by the net pressure (thermal

minus magnetic) but ohmically heated as though carrying

uniform current (a feature easily generalized if the cur-

rent-carrying area is known). The circuit equation coupling

the plasma load current to the generator voltage includes

diode inductance and resistive impedance but does not pre-

sently include any currents not drawn in the load. The

radiative loss is assumed either transparent or (when this

exceeds blackbody) blackbody-limited. In the pinch phase

this is probably a fair description, although the assump-

tion of uniform temperature and density gives an overesti-

mate of the energetic radiation (as just discussed in See-

tion D). In the case of annular plasmas with moderately

high mass and large radius the radiation formula is less

believable and tends to over-cool the plasma.

Time-integrated pinhole and streak photos of wire array

implosions appear to indicate that for massive enough arrays

there is considerable plasma blowoff inward from the denser

16
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wire plasmas, forming either low-density plasma implosions

or plumes This phenomenon, though interesting, is not

within .the scope of the WIRES model, which assumes uniform

wire plasmas. Because of the observed advantages of gas-

puff implosions, this wire blowoff phenomenon has not been

further investigated here, even though it represents a sig-

nificant deviation from the WIRES model.

One-D MHD codes allowing radial resolution sometimes

show the formation of a density and temperature spike on the
7axis when the plasma annulus closes . This is entirely

reasonable and physical, but represents another feature not

describable by a uniform-plasma model. In this case, how-

ever, we hope to generalize the simplified model to allow

such a central compressed zone because the dynamics of gas

puff runs may be seriously affected as the dense central

spike is radiatively cooled to allow further compression.

9-.-

'°'

'.%
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CHAPTER III

APPROXIMATE SCALING LAWS

A. WIRE PLASMA PHASE OF ARRAY IMPLOSIONS

The very-early-time behavior of wire array implosions,

involving the phase transitions of the material and the

associated "pause" (dip) in the conductivity, is discussed

in the literature on exploding wires and is not treated

here. For practical modeling of the implosion dynamics, we

start with an initial temperature at which the plasma has no

more neutrals and is not dominated by strong coupling but

has classical conductivity determined by Coulomb collisions.

After an initial heating expansion, the individual wire

plasmas reach a local dynamic thermal equilibrium in their

own reference frames. For the case of N imploding wires,

. local Bennett equilibrium, (i.e., pressure balance) gives an

-* equilibrium temperature T:

mi I2 (tst1 ) mie. i[I+Z(VTT 2c -mi-I b(t) [III.13
2 WNCz 2

or
l+Z(T ) 10- 2 MA

T,(eV) = 52 10l ) MA [111.2]
m

where m is the mass of an ion, is the total load mass
* . I

(all N wires) per unit length, Am  is the atomic number of

the load and IMA is the total current (in MA) in all the

wires. The degree of ionization Z(T) for aluminum at densi-

ties of order 1021 ions/cm 3 is shown in Figure III.I. The

• .. ., . ... . ,,% .- -. .- -, -,', ,. ,- . . - ..,. ..8 .1 .- .- . .- . .- . ' ,. -. , , . , ,

* . . .' *1 . . . ,- ,. . • . . . . . . . . • • o . • ..
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Figure 111.1. Degree of ionization Z (right-hand scale) and ionization

energy ei (left-hand scale) versus electron temperature

for aluminum in CRE at 102 ions/cm3
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individual wire-plasma radius p expands until blackbody

radiative loss equals the ohmic heating power and prevents

further heating except by increasing current. This occurs

at a wire-plasma radius given by

L ]( 2 i P£)(OBT') = ( IA 2 1 13L 11•3
2wpZaB Tr a111-3

with a the conductivity. Once the temperature is high

enough that a is determined by Coulomb collisions,

"( 3o. i 2T /21
3 1 6/i) 3/ - K [3/2z- lI 41i-- ev"

' / e

(so defining the constant K ). When these wire plasmas justa

merge, their centers are at radius pcsc(r/N) and the result-

ing annular layer has outer radius given by

r (N/2) + /(N/2)2 + csc'(n/N)] pi [III.5]

with

[ Z(T,)II ] I / 3  _ 6

p 2 K__BN T-11/6 [111.6]

in terms of the current I, and temperature T, at time t,

(i.e., merge). (The geometrical factor in brackets is 8 for

6 wires and 22 for 12 wires.) Numerically,

(L(A))2/3"'T 1/ /3 - 11/6

p1 (cm) - 172 N T(ev)' [III.7]

and using the preceding information for T(I) in this expres-

sion one has

MA) N 7/6 Z T ) /3

p,(cm) ..123 1- [ •.17 'A

FI. .
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But this scaling of p, and r, with I-' [or about -3' when

the Z(T(I)) dependence is included] holds only over a limit-

ed range of load mass and current.

As long as the wire-plasma radius p is not clamped by

blackbody loss, it expands at a rate proportional to the

sound speed, i.e., p {(I+Z(T)}'' 2  I IV ''2, until the
""1 + / 2

plasmas merge. With p IV and the radius of centers rc

cccmoving as r c F I C 2/1, the merge condition p-r csin(w/N)

determines the annulus formation in a dynamic way, if this

merge occurs before radiation can limit p. For constant

current the merge condition for non-equilibrated p (i.e.,

for high current) is

P - VT 2 r 0 /2N [ .

erfl/Ln{ro/p csc(wIN)} [III9]

where r. is the initial array radius. For N=6 wires this

gives p=0.1 r, and r 0.3 r, at merge. Thus, if radia-.: c
tion does not limit the wire-plasma radii, the merge occurs
before very significant implosion has taken place, because

the superheated wires expand rapidly. One then has an annu-

lar plasma implosion (starting with inner radius/outer radi-

us - 1/2 for 6 wires) for more of the implosion than if the

wire plasma size had been radiation limited.

From the code and the scaling just discussed, we can

identify the following partially overlapping 9tages in the

WIRES phase of a wire-array implosion:

.0 (1) Ohmic heating dominates; wires expand and heat;

(2) Ohmic heating - PdV cooling ( ); wires expand;

21
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(3) Bennett equilibrium; P t -PB0; I+Z(T)T I2/4N. Radi-th B0  [1ZTT I/N Raiative cooling adjusts wire radius if T is low enough for

the radiation to be blackbody;

(4) Blackbody/Bennett equilibrium: {I+Z(T)JT 1 2 /vN and
1/3 2/3 -11/6 7/6 11/6 -1.6 7/6

p Z(T) I T N / 3I N

(Not applicable if T becomes high enough for quasi-

transparent radiative loss.)

Merging of the wire plasmas may interrupt the process at

stage (2), (3) or (4), or there may be a further stage if

the wires overheat.

In the simple physics of the WIRES phase of the RUNIN

code, only stages (1) and (4) are explicitly included.

Figure 111.2 shows these stages, occupying roughly equal

fractions of the WIRES phase at constant driving voltage.

The modeling and scaling of this wires phase is impor-

tant to the radiation and dynamics in the later pinch phase

- -(only through the way it scales the initial conditions of the

pinch phase (and in general through the duration of the

.. . wires phase, if the generator pulse time is limited).

The radiative yield of the pinch depends on the initial

- radius and temperature (at the beginning of the pinch phase)

as r- 1 T -1 2 . While 12/0 is low enough, this goes as V-"'

12.

B. ANNULAR PLASMA STAGE

The merging of wires produces a somewhat irregular annu-

lar plasma; ignoring the irregularities, one can derive

22
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" I
- 20 40 60 80 100
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Figure 111.2. Radial positions, current and energetic line radiation versus
time (in ns) for a typical RUNIN code run. The wires expand
until radiative cooling balances ohmic heating (dashed verti-
cal line marks the onset of such Blackbody-Bennett equilib-
rium). Inner and outer extent of the wires are shown in the
WIRES stage (radius of centers shown dashed); inner and outer
radii of the annulus are shown in the BRIDGE stage. Pinch

* stage (SQUEEZE) onset occurs when inner radius goes to zero.
The run shown was for constant 3 MV voltage.
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differential equations for the inner and outer radii and the

temperature in various simplified models. The same models

and equations can be applied to the annular plasma formed by

the pinching of an annular gas puff from a supersonic ring

nozzle. Even with the simplest physical models, however, it

has not been possible to do the sort of analytic modeling

here that has been possible for the later pinch phase of the

implosion. Here then the RUNIN code, or specifically its

BRIDGE subroutine, provides the only simple guide. The code

has been used to show, for example, that the ratio of final

to initial radii and temperatures for the annular phase are

very insensitive to the initial radius.

To develop simple rules for expressing variables at the

end of the annular phase in terms of those at the beginning

of the annular phase, the BRIDGE subroutine was run for a

range of input variables. The "output variables" chosen for

examination were ratios of final to initial radius, tempera-
L.

ture, kinetic energy, and r/, a variable which occurs in

the formula for radiative energy loss in the case of trans-

parent radiation.

Table III.1 shows the percentage variation in the output

variables divided by the dynamic range (maximum value/

minimum value) of the input variables, in the absence of

radiation. None of the output variables depend sensitively

on initial radius r,. The kinetic energy ratio cf / i is the

only output variable to have an interesting dependence on

the initial velocity v of the annulus outer radius (i.e.,

on the initial kinetic energy Ci of the annulus); the ratio

. of initial to final values of r, T, and especially r are

insensitive to v. . The r/V ratio (final to initial, for

*C*. P .-..'.....'.°.,..-.. . .... ... '.. ,,.,....--... ... ........ . ..- ,.-,, . "..-".". - - . C . . .'4,. - . - ... . ,'. .. .. . ,. , .-',"9



Dependent Variables

4 rf Tf KE rf

r. T. KE.
1 ~~ .1 ATr.

q1 &

0 r. 0 0 0.6/2 0

v. -.16/30 .13/30 -318/30 .09/30
1

T. .18/4 -.34/4 -.67/4 -.09/4

Table III.1. Variation in ratios of final to initial dynamical quantities

(shown by numbers in numerators) over dynamic range of ini-

tial conditions for the plasma annulus (shown by factors in

denominators; a factor of 30 in vi, for example, indicates a

factor of 30 change, about some nominal value typical of the

inward speed at the time the annulus is formed). Subscript f

refers to the time at which the center of the annulus closes.

A zero indicates very weak dependence.
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the annular phase) is also insensitive to the initial tem-

perature of the annular plasma, Ti, although the r and T

ratios depend on T

C. RADIATION SCALING AND DYNAMICS IN THE PINCH PHASE

1. The Nearly-Adiabatic Uniform Radiator

The RUNIN code indicates that the temperature versus

radius behavior of the pinch phase lies fairly close to the

- adiabatic law, for low-mass loads and low currents. The

rate of doing PdV work greatly exceeds both ohmic heating

and radiative loss except for a very brief interval near

minimum radius. In addition the code indicates, in agree-

ment with experiments, that the current does not change by

a large factor during the compression. These facts suggest

an approximate set of differential equations which can be

treated analytically, with some approximations, to yield

*-. formulas for the output of energetic radiation and for its

*optimization. This section of the report treats first the

zero-order formulas that result for a pinch in the adiaba-

tic limit, and then the first-order correction when the

radiative energy loss deepens the implosion perceptibly but

not so much as to make the r-T trajectory deviate far from

the adiabatic one for very long during the implosion. The

utility of these formulas lies in the understanding they

provide of the central qualitative concept of how to design

and optimize an imploding radiator, and in their scaling

with several variables at once - load mass, atomic mass

number, initial conditions at the assembly of the plasma

pinch, total current delivered to the load, etc. They

26
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reflect the facts that overdriving or underdriving the load

can result in a radiation pulse that is too short or too

cool, or occurs at a less-than-optimal density; they indi-

cate what the optimal load current is for given conditions

at the formation of the pinch, and how it depends on the

load variables, how sensitive the radiation loss is to devi-

ation from optimum, and what the peak attainable yield is as

a function of the variables, subject of course to the limi-

tations and approximations of the model. Finally, a discus-

sion is provided of the limitations of the model, and of

what happens to the predicted versus actually expected radi-

ative behavior.

We arrive at simple formulas in two ways: first, by

simple dimensional evaluation of the time-integral of the

radiated power, and second, by a more careful evaluation

based on expansion of the integrand. Both techniques pre-

suppose that the plasma is nearly transparent to the ener-

getic radiation, and that is consistent with the load masses

of present and near-term experiments. We note that similar

techniques apply to neutron production from fusion targets

inasfar as the targets remain uniform cylindrical or spher-

ical plasmas, but to radiatively driven implosions only

inasfar as the radiation pressure varies nearly inversely

with load radius.

A uniform pinch with mass m, atomic mass mi, radius r,

length L, and temperature T -T -T is governed approximatelyi e
by the dynamical equation

mF - 2wr£(Ph- Pa ), [III.10]

thermal mag

with
(m/m

Pthermal 1 n (1 Z)T, n1 I r [1.11]
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and

P -in cgs units

Here Z(T) is the degree of ionization and I is the pinch

current. This equation has the form

ri - aT - b [111.13]

when Z and I are nearly unchanged during the course of the

pinch. Here

a - 2(1+Z)/m. [111.14]

and

2
+ -me 

[III.5

When ohmic heating is negligible (as with short-duration

pinches with high conductivity) the temperature is governed

approximately by

l -(C/r) + fIT [III.16]

where C is an approximately constant adiabatic index, and

the radiative loss function f(r,T) will be neglected in the

adiabatic limit and used as a perturbation in deriving the

first-order corrections. The temperature model equation

arises from equating PthV power, less radiative loss, with

the time derivative of 3/2Ni(1+Z)T + Ni i, where ci is the

mean ionization energy (as a function of T) and N.-m/m. is

the total number of ions being compressed. The thermal

pressure is Pth -n (1+Z)T, and

d( ] [( Z+T -L) + .-],[III.17]
4.t 2 C V Z ) 2 T (13 T , [

.-.
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while V-2wtrr. When f is negligible this T equation can be

integrated to give the adiabatic law,

T/T, - (ri/r)C [III.18]

with r1 and T, the initial values at time t, when the pinch

phase begins. This form for T is substituted into the force

equation, which can then be integrated once to give

Cr 2  
Cr - 2a(T-T,) + 2bin(T/T,) [III.19,

or its equivalent form involving r instead of T.

The energetic radiative yield is the integral

(m/m 1 ) 2 / F iY{ t)}t II.20] 1
-irE, J r (t) ' [ 1.0

in the transparent limit. The function g(T), i.e., the

energetic radiation per pair of ions, is known for colli-

sional radiative equilibrium, and it is assumed that the

dynamical changes are slow enough that changes in radiative

power track them without appreciable delay. The wir denom-

inator comes from the assumption of uniform density and

temperature, and gives a resonance shape to the integrand,

which peaks near the time of peak compression. If the maxi-

mum temperature T is near the peak, Tpk, of g(T), then the

integrand peaks when T reaches Tm  and r reaches r , the
minimum radius.

In the simplest approximation one evaluates the integral

using the resonance approximation,

g" (T~dt .g(T m)-r [III.21]

f. m
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where the pulse width T is found approximately by treating

r(t) as quadratic about peak compression;

rI Hmr~ /t-()/i 2  [I11.22]
r - r 2m + m t' T (rm [

so that

" 1 r ,111.23]

rmm r (r14 r(aT mb)'' 2

Generally aT >>b during most of the pinch phase. To the ex-
m -1/C

tent that r(T) follows the adiabatic law, one has rm  m 

leaving only a weak dependence of T/r 2 on Tm . This gives
m

y> (m lm i)2
_ i(1/C-1/2)a/ 2  i/C Tm g(T [III.24]

ri~a 12r,T, /

in the adiabatic resonance-approximation limit. Recalling

that a-2(1+Z)/m and using Z>>1 and Z/m 1/2m (with m
i i p

the proton mass), one can write

> 2 - 2 T 1 /C - 1/ 2  "-2". (m 1 E i T g(rm CItII.25] 3

To the extent that 1/C-1/2 is small, this is clearly maxi-

mized (for given r,, T,) if the driving current and initial

conditions are such as to make the maximum temperature Tm

coincide with the peak of the energetic-radiation curve

g(T).

Since in the adiabatic limit Tm is reached together with

r when r-O, we have from the equation for Cr 2 an equation
m

for T L

a(Tm-TI) - btn(Tm /T,) - [111.26]
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A,

A useful form of this for iteration is
C *C b

Tm  T, + +- 1n(Tm/T,), [III.27]
"T.2a a m

since the in term varies slowly. The term represents

kinetic energy provided prior to t, (which may also depend

on a and b), and the in term represents conversion of mag-

netic field energy to thermal energy since time t,.

Prior to time t, the motion is not given by the same

differential equations, is generally not adiabatic, and

generally does not involve nearly-constant current. The

kinetic energy acquired by time t, does, however, scale with

b (i.e., with 12) for any given pulse-shape of I(t) deliv-
m

ered to the load. Thus if T >>T,, then T is approximately
m m

proportional to b, i.e., to L1
2 /m. So, while refinements

can and will be made to this, one has a rough rule of thumb

that for given r, and TI, the current Iop t required to drive

T up to Tpk scales nearly as (uTpk)'', where U=_m/i, in the

adiabatic limit; and Y scales roughly as U2 ImjZg(Tp).

Both scalings are equally valid if I is replaced by I
% I opt

6" and Tpk by Tms so that one has

Y> I M 2g(T )T - 2 [11.28]
=m'mm

(aside from in terms), in the adiabatic limit. With less

than optimal current, i.e., where T is on the shoulder of
m

the g(T) curve so that g(T) is increasing roughly as a power

of T, one may even find a region where g(T )T - 1 T ° and so
m m m

experiments in this domain could fall along a curve Y

141, even at constant m.

We will see later that the current required to reach a

given T is larger in the nonadiabatic case. This will be
m

only slightly offset by the fact that rm will be smaller,
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giving larger values of fg/r 2  once the desired Tm is reach-

ed. In the totally lossy case, the plasma cools as fast as

it can be compressively heated, and temperatures on the

order of T cannot be reached. In that case Y> is general-pk

ly small. This can happen if the load is sufficiently

massive.

The evaluation and optimization of Y can be refined

somewhat within the adiabatic limit. One can make a better

approximation to fg(T)dt/r 2 and one need not argue that TOpt

- Tpk To evaluate the integral, one first constructs T/T

as a function of 0-=n(T/T,), using the expressions for r(T)

and r(T), and then uses this to change the integration

variable from t to 0. One then expands the singular

denominator of the new integrand about its branch point at

T=Tm , using the method of fractional derivatives (rather

than simply expanding r 2 as r2  + 1/2 *r t2 ). Then, because
M.

the g(T) curve is nearly parabolic in a log(g)-log(T) plot,

one can use the model

ing - in gpk- B[in(T/T pk)]2 [III.29]

(with fit parameter B) to do the resulting integral. Car-

rying out this procedure, we have

e A0- B0 2g(') i -B02 m e do-
d - t- - F-,gpk e  pkf CIII.303

f 0 g B f+b-aT,(e0-1)

with = Zn(T/T,), A = C-' + 2B0p, £ = gCrO, and

pk#

el + be - aT,(e - 1) - 0 defining m [111.31]

mm
"' Le t ng w0 and expanding the radicand about w-0,
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e, b* - aT,(e - 1) -(aT -b)w 
2 , C1I1I.3 2]

M

the integral on the right becomes

P(bs~) Q(w)dw CIII.33]

* with

2 exp(A 0 B B2

Prbu mJ V aT, exp(om b CIII1. 34j

and

Q(w) =exp [-(A -
2BOm )W2 -BWI). 1111.351

One can now optimize PfQdw for given r, and T, by setting

its derivative with respect to b equal to zero; doing so

* gives (after some algebra)

-'(x +A)(x + a)(x e ) (A - %)/4B -0. CIII.361

where

x I n(T /Tk) CIII.37]

A pk + dE,/db, 1111.381

-t 'k C1 /b + aT,/b -1, 1111.39]

and

e - (2C' 1)/4B. 1III.J40]

When T is near T as expected physically, x is small andm pk
the optimal value of x is

3
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" [111. 1
opt 4BcA - N( + A)

with

N 2C - - 1. [I. 42]

This gives the optimal value of be£I 2 /mC 2 :
x

aTpk e - aT[

opt (e,/b) + 4pk + x[II43]

with x - Expanding this for small x, one has
b(aT.A) [) NaA - 1

opt pk A 4BaA- N(aA) [III.4]

where the I dominates the bracket. In physical terms, if

one drops the small correction,

C2
12 m 2 ( 1+Z) pk12 a (in) 2([) c p III..45]
opt = ( mrI  A

or

I (MA) - 0.3 x 103[S (e-)T (keV)A- ]1 / 2 [IT1.463
opt Lx cm pk

with

A l e1 /b + Zn(T k/T,) [III.41]

and c,/b is assumed independent of b. The radiation inte-

gral with the optimal driving current can be evaluated using

e J xp[C -C±1-2Bx)w'-Bwfldw= - ~"e' K11 ()B)'

*q 2

-1 /4
which is approximately 0.91B when C - 

- 2Bx < 1/2. This

gives

324
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10- 42
TkN/2 [ A /

with the total mass per unit length (gm/cm) and A mthe "

atomic mass in AMU. We note here that a=-I--3 and A /(I+Z)"-

mm

-2. The initial radius at assembly, r,, is expected to be
of order 0 J3 m in typical experiments. The index N is

1roughly 12.

""Before refining these estimates for the adiabatic limit,

let us consider the magnitudes they imply. To do this, we

recall section A of this chapter, and model the t<t, cool.

collapse phase as having (I+Z)T approximately proportional .-o

2to I(t) once a Bennett quasi-equilibrium is reached. The

plasma initially heats and expands until reaching such an

equilibrium, although the equilibrium may not always be

recll seoe time t, .  This collapse-phase model is espe-

cially appropriate for wire array implosions where a clear

Bennett-pinch quasi-equlibrium exists for each wire. Refer-

ring to this equilibrium temperature as To(I), its near-

constancy for constant I gives us T,-T o in the constant-

current case. Physically, the near-absence of heating in

this phase reflects the fact that although the plasma is

accelerated inward by the field, there is nothing except

magnetic field for it to push against to compress and heat,

as long as the acceleration timescales are long compared

with the sound transit time across the plasma(s) (i.e., as

long as there is no shock heating).
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For wire array implosions, to the extent that the cur-

rent I in the pinch phase is related to the typical cur-MA
rent I in the WIRES phase, and to the extent that the annu-

lar BRIDGE phase does not strongly heat or cool the plasma,

one can relate r, and T, at the beginning of the pinch phase

to the driving terms in the WIRES phase. Over the limited

range of total wire currents Iw for which pressure-balance

Bennett equilibrium is achieved in the WIRES phase one has

for aluminum 6-wire arrays

[1+Z(T,)]T,(keV)-2.25 x 10 5 I 2 / (g/cm) [111.50]

with I w in MA, from Equation [111.2]. Over the even-more-

limited range of Iw for which blackbody cooling balances

Ohmic heating one has

" " -'ZI~~1/3[{ + (T I 11 1 / 6  [ I . 1
rw(cm)-1.5 x 105 Iw 1Z 1 [1+Z(T1 )hj [111.51]

w w

for a 6-wire aluminum array merging at radius rw. (Again

I wIis in MA, and the formula probably does not apply much

above Iw/u-10 .) The BRIDGE phase further compresses this

outer radius by a factor of order 0.6 before it assembles

into the pinch phase.

The ratio of maximum to initial temperatures in the

pinch phase, T m/T, based on the quasi-adiabatic approxima-

tion, is shown versus the normalized quantity

K r2a [I1.52]

in Figure 111.3, for various values of rFb/aT,. For alumi-

num,

r - A/p)/T,(keV). 11.53]M

*M
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' Figure 111.3. Ratio of peak temperature to initial pinch temperature, as a,,
+'"function of initial kinetic energy (scaled to thermal), for %

various normalized currents, in the auasi-adiabatic limit.
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For any given generator voltage pulse shape one expects both

r1 and T, to be roughly proportional to b or 11 /M, so that

neither K, nor r should vary greatly as l2 /p is changed.

What variation there is should come about because of changes

in the wire merge conditions and duration of the annular

phase. K, is ratio of kinetic to thermal energy content at

the beginning of the pinch phase, while r is a ratio of

magnetic to thermal energy at that time.

2. Singular-Perturbation Expansion for Monadiabatic Trajec-

tories

The energetic radiation output (Equation 111.20) for the

nonadiabatic problem can be calculated by expanding g(T) and

r(t) about the peak compression, r-rm, which we take for

convenience to occur at t-0. We keep in mind the useful

case where the nonadiabatic trajectory given by

- (aT - b)/r

[111.54]
T - T(-Cr/r - f),

is near the adiabatic one given by the special case f=0; in

the (inr, InT) plane the trace of the adiabatic trajectory

is up and back along the line segment tn(T/T,)=-Cn(r/r,).

The nonadiabatic one is a loop, as shown in Figure 111.4,

except at late times (when it may re-compress).

Equations [III.54] give first integrals.

T/T1  = (rlr,) Cexp - ffr(t),tldt [III55]

afg

and

C ;-C2-2a(T-T1 )+2bLn(T/T1 )-2f (aT-b)fdt. [111.56]
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These can be written as

T/T - (rlr,) -C1-e(T, T,, a, b, C, m)) [III.57]

and

(F - [12 [111.58]

where

-b" t
t f dt [111.59)

1% and

C (aT - b)f dt [111.60]

and F is the function r2 for the adiabatic case,

F = - (2a/C)(T-T,) + (2b/c) In(T/T,). III.61]

The radical in [111.58] cannot be expanded directly for

small C2 because F-0 at peak compression in the adiabatic

case. We will return to these formulas when computing the

values of r and T at peak compression.

For the radiative yield we expand the numerator and

denominator of

f gfx(t))dt
_. rl(t)

about the time t-0 when r has its minimum value r :

r(t) - rm + • .m m £111.62]
'Uw

* gtx(t)1 l gm + g-g";2 g )t ... [ III.63]

where we have used x E Zn(T/Tpk). The subscript m indicates

evaluation of a quantity at time 0 when r-rm. (In the non-

adiabatic case T has largely reached its maximum and is

40 U'1
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decreasing by the time r reaches its minimum value rm
Figure 111.5 shows the shape 1/r2 (t) for the adiabatic and

nonadiabatic (dashed) cases. The t3  term in r(t) is due

entirely to the radiative energy loss.

Using the nonadiabatic Equations [III.54] we can evalu-

ate the time derivatives at t-O (r-0):

(aT -b- /rm [iii.64]

r - aT /r --af(r mT )T /r --aG(x m)/(irm3 ) [III.65]
m m m m m m m m

x T /T -- f(r ,Tm ) -G(x )/(irr 2 T) [III.66]
m m m m m m mm

x - T /T - ( /T ) 2 -C(aT b)r-2

m m m m m m m

-G'(x ) (wrT ) -II.67mm m m m [1.7

[since Ym = -C(F /rm )T (fT)Im, where we have used the
-m.- m m dt

fact that T should be hot enough that most of the radiation
m

energy loss at peak compression is through the transparent

hot component described by power g(x)/(itr2 ):

T f(rm,T m ) - G(x )/(ir 2 )m m m m m

[II.68]

with G(x m ) - (mlmi)g(Xm)/Z2

Thu te trmG'x t in Equation [111.63] is of' order GG'
m m

Gzx2  the G,'xm term is of order G3 , and the x G is of order
m m m m m m

G- G x
* mm

With these expansions of g(t) and r(t), the integral

2~2

:-9- (g/r )dt has the form

'-41
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r (A, - Bt Ct')
dt. 6 9IA2 + B 2t' - C2t"'J [1"

This is done by (a) expanding the denominator since c 2 is

small,

(A+Bt-Ct3) -2-(A+Bt 2) -+2Ct3(A+Bt2)-, O(C2t) ,

(b) approximating the integration limits by -- to +-, (c)

ignoring odd functions of t in the integrand since they .4.

*: integrate to zero, and (d) using the formulas

• dt -1/2J +--~ B- irCAB)

dt i 1/2
(A + BtT) 7 CAB)

J dt 3: -1/2
(A + Bta)' T CAB)W,

and

t m t 2dt -A t dtmd f m2m-2

(A + Bt 2 )p  B (A + Bt) p - 1 f (A + Bt2)p

The result is

(w/2)(AB,) -I/2 (A1 /A,)-(CI/B,)-(3B,C,/2B2)} [III703

2 g
- or G .

(g/r2 )dt r 2m-Cg ( -b'
r (aT -b) 1 /3 m (aT W2 r-T
mm Im m m

g (G'2 - G G. + GG")1
m m mm m7
r'Tl(aTm b) -L),,

"m m m-

4~3

%x
%'

.-
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Modeling g by gpk exp(-Bx2 ) as before and neglecting b com-

pared with aT one has

- -Bx2

a p L (1 - 2CBx) +(grrd (aTm) 1/

' G~kexp(-2Bx2 ) ]Ix2

". ar 'T (* ) (1 - x - ]B= [111.72]
G m

evaluated at x - xm = £n(T /Tp)

The values of r and T are not the same as in the adia-
m m

batic case (both are smaller). Subracting the first inte-

grals of the adiabatic motion equations from those of the
nonadiabatic case gives

Ax + cA(Enr) - - f f(r,T)dt [111.73]

&x - a Ta(ex) b-1 f(aT-b)f(r,T)dt [III.74]

where A indicates the change from the adiabatic case with

the same b value. Evaluating these at rm (t-0, x=x ) and
replacing the lower integration limit by -. , we can use

techniques similar to (a)-(d) above, to find (after some
. . algebra):

-.0 1+C+2CBX Gm

,- f(r,T)dt 1 9 m ) T m
CD2/ 17Z Tm r 4--T-"

-.- m m

(1C+2CBX >
1 m y
T (I +CBX 7 7m), -I.5

m (m/mi)Z Tm

,".." Ia G
CE 2 - (aT-b)f dt - a G

f /29. r V/aT m
- m m
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1 Y>
m -1-CBX 2 (m/mi)Z2T [III.76]= ~(-Bm m

to first order in G.

Since m/m i is the total number of ions and Z2 -3/2(1+Z),

the ratio

(- (m/m )Z2 T [111.77]

is just the radiative energy loss during the pinch phase as

a fraction of the peak thermal energy of the load. Then

Equations [III.75] and [111.76] can be used in [111.73] and

[III.74] to find

Ax.- (1 + C + 2CBX Yi ..-?(1 + CBX 2

to first order in Y,

Ar 0 f [III.78]
i.e.,

S(b) madb) exp[-(Y/2)(+C+CBX )/(I-CBX )] [111.79]mmdm m

and

r (b) - r (b) [111.80]
m mad

to first order in Y. (Tma d  is the maximum T predicted in

the adiabatic case, and rmad is the minimum radius in the

adiabatic case.) To first order in Y then, the deviation

from the adiabatic trajectory due to radiative energy loss

reduces the temperature at maximum compression, for any

given b-12 /wc', but does not appreciably change the minimum

radius of the pinch. (The radius change is second order in

4Y.)
- . .. .
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Subject to the limitations of the uniform-plasma model

(etc.), the RUNIN code allows assessment of these results,

whereas the analytic scaling laws for the quasi-adiabatic
radiator do not apply when the radiative loss proceeds as

fast as thermal gain. Because of this, the RUNIN code will

shortly be used for investiga.ting the branching ratio,

Prad/[d(nT)/dt], as a function of ni, T, and the total input

power -d/dt fl/2pV 2 d'r, and for scoping optimal conditions

at high currents. Related analytic work will be carried on

in that conjunction, to obtain approximate scaling laws for

the efficient-radiator case as well.

D. CAVEATS

Results such as these derived from simplified approxi-

mate models, deserve caution in their application to real

laboratory systems. We list here the major assumptions in

the foregoing scaling laws and cautions appropriate to

them.

1. Uniform Plasma

If only a fraction of the total plasma volume radiates

at the indicated temperature, not only must the energetic

radiation estimates be reduced proportionally, but the non-

adiabatic corrections must be generalized due to the addi-

tional lower-temperature radiation from the cooler plasma

fraction.
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2. Inefficient Coupling of Kinetic Energy to Radiation

First-order corrections to a quasi-adiabatic pinch are

appropriate only if the energy losses due to radiation are

not extremely large. The total low-energy radiative loss

from a cool ohmically heated discharge can exceed the ther-

mal energy content of the plasma at any one time, and in

fact that is an efficient way to design long-pulse low-ener-

gy-radiation sources; but it is clearly not describable by

the formalism used here to estimate radiation from a some-

what damped pinch bounce.

3. Energetic Radiation Dominates Losses in the Pinch Phase

The use of the approximation Y - Y in formulas is not a

necessity, but is done for simplicity and is appropriate

for a uniformly hot plasma near the peak of the radiative

loss function. Formulas EIII.78] must be interpreted

cautiously when applying to typical laboratory cases where

the energetic radiation during the pinch phase may be a

smaller fraction of the total radiative loss.

4. Constant Current

Although one can model non-constant currents through

suitable choice of driver functions b(t) (replacing the

constant b in the analysis), we have not done so in this

presentation. As one can see from RUNIN code runs, the

.0_ assumption I-const. is only very approximately satisfied

during the pinch phase.

-... . . . .- -. . . .
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5. Dependence of Pinch Results on Initial Conditions

- The wires and annular phases of the implosion determine

the initial conditions for the pinch phase, and inasmuch as

they depend on the generator current (assuming fixed current

versus time profiles with variable amplitude), the optimiza-

tions for pinch radiation done at fixed initial state are

not applicable for the total problem.

6. Ohmic Heating

While ohmic heating is negligible for strong implosions

of low-mass loads, high-mass loads accelerate more slowly

and may have much lower PdV heating rates. The smallness of

the ohmic heating is also dependent on the assumption of

fairly complete current penetration during the wires or

annular phases; if the current is confined to a very thin

sheath, ohmic heating power increases: P1 = 2wifnJ 2 r dr -

2 %1
2 /aAr with conductivity a(T) and current-carryingcurr

area Acurr

These cautions are pointed out as reservations which

could be major in some implosions and some parameter ranges,

but which are probably not so major in typical present-gen-

eration experiments. An attempt has been made to make sim-

plifications to provide transparent calculations, without

throwing out the more important physics affecting the scal-

ing. We have also provided a quantitative evaluation of one

"0 important deviation from the idealized formulas (namely that

due to radiative cooling). Other deviations, particularly

at the higher load masses implied for very-high-current

.. . . . . . . . . .
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experiments are less easy to quantify; for example some of

the opacity and radiation blanketing effects do not appear

to be representable by simple algebraic formulas, thus ne-

cessitating (so far) case-by-case code calculations.

E. COMPARISON OF REQUIREMENTS FOR GENERATORS DRIVING RADIA-

TION SOURCES AND FUSION TARGETS

Inelastic processes leading to nuclear fusion are

strongly exothermic, whereas those leading to radiation are

endothermic. Because of this difference, the nonadiabatic

*trajectories in lnr-lnT space for radiation and fusion tar-

gets curve away oppositely from the adiabatic trajectories.

More important a fusion spark, i.e., a central region with

enhanced temperature, tends to -expand and propagate the

fusion burn whereas central radiating spark (enhanced densi-

ty, or temperature within limits) tends to radiatively cool

and allow further compression, leading to a radiative pulse

of increasing intensity, but decreasing energy per photon,

and a non-propagating radiative burn because of the high

photon transparency at low masses. (Thus quasi-adiabatic

calculations tend to be overly pessimistic for fusion

sources but overly optimistic for K-line radiation sources.

The applicability of uniform-plasma approximations is poor

for fusion burn, better but still questionable for radia-

tion production.)

Another very important difference is that the critical

temperature required for fusion reactions to proceed appre-

ciably is much higher than that for the production of ener-

getic radiation in a plasma of intermediate z, e.g., argon

or aluminum; and the critical fusion temperature is an ion

4
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temperature whereas the radiation requires only sufficiently

hot electrons which are generally easier to obtain. Sub-

tracting D-T Bremsstrahlung energy loss from D-T fusion

energy gain, the g(T)-equivalent energy production curve for

a fusion neutron source has a broad maximum at 20-30 keV ion

temperature, while aluminum K-line radiation peaks at 1 keV

and argon at 2.4 keV. For present or near-term energy

sources available to drive laboratory-scale implosions, this

makes radiation sources much easier to achieve than fusion.

Hydrodynamic timescales in a fusion pellet are also

faster than in a radiation source plasma because of the

lower atomic weight of the fuel. This may result in power

delivery requirements for fusion targets which are higher

not only because of the need to achieve much higher tempera-

tures but also because of the need to deliver the energy

more abruptly to avoid pre-heating and/or ablating the fuel

during the run-in phase of the liner or pellet.

In both fusion and radiation targets, pre-heat of the

central region during the run-in phase is to be avoided

because it reduces the peak achievable n2; i.e., the greater

the central pressure just before collapse of the liner/arnu-

lus/pellet, the softer the compression. Since blackbody

radiation from the imploding plasma annulus can be a major

contributor of central plasma preheat it is a truism that

the annulus or shell should be kept as cool as possible

during the run-in phase. But in fact one has rather little

control of the ohmic heating of the shell or annulus except

to deliver most of the driving power near the end of theS
run-in. In laser-driven implosions this is achieved by

pulse tailoring; in electro-magnetically driven implosions

50

* -



it is more difficult because (1) the effective driver coupl-

ing is reduced once the implosion velocity is high (the

effective electric field driving J for the JxB force is

E+VxB/c, and although E increases, V and B tend to increase

faster and cancel the E) and (2) voltage pulse tailoring on

10 ns timescales is technologically more difficult.
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CHAPTER IV

SIMPLIFIED HON-LINEAR FIELD DIFFUSION

Electric or magnetic field diffusion into an initially

unmagnetized plasma slab was modeled for a fixed plasma with

temperature-dependent conductivity (e.g., T3' 2 ) and with

, . ohmic heating balanced by radiative heat loss of the form

* RnOTa (R,a,B constants). Except if a - 3/2, the temperature

is then given by JE - Rn T . The diffusion equation for the

electric field E then takes the form

E" - nPE qE -,

where p and q are related to a and B. This equation was
solved for model n(r) profiles.

A. PROBLEM DEFINITION AND APPROXIMATIONS

The diffusion of magnetic field into a plasma is affect-

ed if the accompanying electric fields alter the plasma

conductivity. Since ohmic heating raises the plasma temper-

ature, the self-consistent field profile and the field pene-

tration history can be quite different from the ususal dif-

fusion model, but can be calculated if a suitable equation

for Te is available.

In general, two effects complicate the physics of the

field penetration: fluid motion, i.e., momentum exchange

with the field; and thermal conductivity, which makes the

*.".temperature equation a partial differential equation as well

as the field equation.

52

S . . . . . .. .- . . ... .



But in certain limiting cases, including large ion mass, k

the plasma motion, including v x B back-EMF effects, can be

ignored. And if thermal conductivity is sufficiently small

so that inelastic excitation collisions dominate the heat

loss, we get a local ordinary differential equation or alge-

braic equation for Te , coupled to the partial differential

equation for the field.

In a very simple case with fixed ions, quasineutral

plasma, and negligible thermal conductivity, one may assume

a quasistatic heat balance between ohmic heating and excita-

tion cooling (the excitation energy is assumed radiated away

in optically thin radiation):

T __ (nT + neT) J.E - n e V (T', n ) [IV.1]
2t i i e e e xx e o

where J - a(n , T e)E is the induced current density with

conductivity a (not necessarily scalar), cx is the excita-

tion energy per ion (or atom), v, the excitation rate,

which depends on the number density n of ions or atoms than
0

can be excited. If ionization is allowed as well as excita-

tion, one has

(nif +n eeT )-J.E-n e v (Te n )-n C v (T no ) LIV.2Ji e e exx e o ii e 0

If the diffusion timescale is slow compared with the

ionization and excitation times one can think of ne as de-

termined by Te , i.e., when

ii - o,

a ne eT
L-. - l

n Tn
L.. '" I e aT e

e
L " ' " i n n

ae
- (ne T ) n e.e(1 3 i ) [IV.3]

*m e
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with the logarithmic derivative term a function of T We

take T = Te = T.

For o(n , T e ) we have a - (e2 /m) (ne /v m ) FCw /v m), with

vm  n K' 3/2+ KIT1/2 [IV.4]
ece n n e

eB/mc, K' and K' constants, and F approaching unity for

small wc /vm* The last term of vm applies if neutrals are

present. For the fully ionized plasma, a has the form

3/2 W -3/2"
K KTe /neKT 3/2); [IV•5]

on the other hand, if neutral collisions dominate , then a

has the form a = K n T / To allow either case we let
'Y 6 nn e-'.

a-Kn iTe, and assume n eTe n (x) with some power c, but

restrict the magnetic field to values small enough that

wc/v m < 1/4 so that F 1 and the conductivity is ap-

proximately scalar.

With the approximation that aE2  and cooling Kx ni Te are

nearly in balance, we can treat situations where neT << aE2

and K n T Then, except if a - 6, we have

1

, T (X,t) ( ni E2a ande K iA

K q-2 n-q+e IV.6]J K(--)
Kx e

26 v
where q - -and -p - Y S -

(A similar result (with different powers p and q) was also

obtained for the "anomalously resistive" case where J/n ee is

limited by the sound speed). So when ne/ni varies roughly

as Tc we have

5h
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JE) K (-) n-PEqE. [IV.7]

This leads to a PDE of the form X
S2

E q i - C nP(x) a 2E ,  [IV.8]

(the dot indicates a/at), to which we apply boundary condi-

tions E(--) - E and E(+o) - 0, and initial conditionsa

Eo for x < x1 < 0Eo(X) .. . IV.9]
E 0(x) 2 2

Eoexp-(x - x) 2/A2) for x > x
a

choosing x, close enough to where n(x) = 0 so that the E

wave term is still negligible compared with the ;E and/or Eg-

terms. A ID slab model was used and n (x) was given time-

dependent function of x. In the wave-diffusion equation, Vx
+Vx E + t /c - -(4w/c2) (;E + Eo), the E wave term was

dropped. We assumed one of two forms for n.(x); a step '

function n i = nioH(x) , or a Guassian, n = nio exp(-x 2/h2 ).

B. NUMERICAL SOLUTION

The resulting nonlinear diffusion equation for these

simple approximate cases was solved using a ID finite-dif-

ference computer code, fully flux-conserving, employing a

fully implicit method with tridiagonal matrix inversion.

The code was run for a time equal to four initial magnetic

* diffusion times for the Gaussian plasma, on a fifty-point

uniform spatial grid. Because the wave term was not kept,

55 -,
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the solutions are not quantitatively correct far from the

plasma. The Courant stability condition, At < &x 2 /D, was

not satisfied at the foot of the pulse when D(E) had a pole

at E - 0, but the model equations are not strictly valid in

that limit because the conductivity and temperature do not

actually go to zero when E goes to zero at the diffusion

front. On the timescales of interest, this failure to sat-

isfy the Courant condition at the front did not make impor-

tant changes in the overall field diffusion history.

C. INTERPRETATION OF SOLUTIONS

The solutions for an ionizing Argon plasma with Coulomb

collisions and excitation of ion lines (0-2, Y-O, 6-3/2) are

compared with the solutions of the standard textbook case,

0 0, in Figure IV.1 and IV.2. Where n is not small, the

buildup of plasma conductivity (for a > 3/2) tends to short

out the field penetration and steepen the gradient of E. In

the absence of other effects, we would interpret this as

evidence that (1) the bulk field diffusion in such a plasma

is slower than the rate indicated by the magnetic diffusion

time 4waoh 2/c2 but (2) the diffusion of the "foot" of the

field profile is much faster than for the constant-a case

because the conductivity and temperature are low near the

foot.

For a less than about 3 in the radiation/excitation Ta

dependence, the nonlinearity of the diffusion, E , with q -

3/(a-3/2), can be quite strong and sensitive to a; for Argon

at n 10 2 0 cm - 3 and Te - 50-150 eV, q was 0.91 and the

nonlinearity was moderate.
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NONLINEAR FIELD DIFFUSION IN ARGON
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This field model calculation was also applied to a weak-

ly ionized region in a uniform neutral medium, with elec-

tron-neutral collisions dominating (Y-1, 6- -1/2, <av>-T1/2

and with excitation of neutrals (8 - 1). Here p - -1 and q

- -1/(a + 1/2). Again the diffusion was compared with the a

= 0 case. Here increasing T reduces the conductivity and
e

enhances the diffusion rate instead of impeding diffusion,

but the nonlinearity is weaker.

At higher temperatures, when a is not much larger than

6, i.e., when the temperature-dependence of the excitation

cooling is not much different from that of the conductivity,

excitation fails to clamp the electron temperature at a

well-defined value, and the f term in

nt = G(T )(aE2 - K neTe) [IV.iO]
e e e x ee

is not necessarily small compared with the right-hand source

and sink terms. The equation in this case may fail to spec-

ify a temperature algebraically, especially when a n ase

well. and it must be integrated in time simultaneously with

the E field equation.

With the more advanced MHD code discussed in Part II of

this report, we are also exploring other effects, including

S. . those of self-consistent magnetization in the conductivity,

thermal conduction, fluid motion, etc., which allow a broad-

er range of penetration phenomena for the electric field.

D. CAVEATS TO THE FOREGOING NONLINEAR DIFFUSION STUDY

To assess the importance of ohmic heating and plasma

blowoff, and to predict the dynamics of the assembled pinch

plasma if ohmic heating is important, it is necessary to
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have some knowledge of the field penetration depth into the

plasma. The process is clearly affected by nonlinear fea-

tures as just described, but also by other features not

included. Perhaps the most important of these is magnetiza-

tion of the conductivity, which raises the effective resis-

tivity Just behind the field penetration front and hence

favors current flow on the front where the field is still

low. This probably tends to enhance the effective diffu-

sion rate of field.

Second, preliminary results from the ID code described

in Part II of this report show that the plasma motion, not

fully considered here, is important not only in reducing the

effective electric field by v X B (which is easily included

in this model, taken in the plasma moving frame) but also in

causing compression (nonuniform motion) of the plasma.

Finally, thermoelectric fields are set up, as shown by the

1D code and these tend to make a plasma which is overdriven

(where E is large) transmit the force and cause generator

action in its interior, setting up magnetic fields due to

the resulting axial current filament. This may explain a

feature commonly observed in the plasma focus, namely pitt-

ing of the cathode on the axis (presumably by an ion current

filament); but such thermoelectric effects cannot be includ-

ed in the simple model explored in this section.

In addition to these caveats there are the mathematical

limitations of the model. Temperature is increased by ohmic

heating but does not vanish at the field front where ohmic

heating vanishes. The radiation, at interesting tempera-

tures, often does not have a simple power-law fit.

The model above may be useful as a step in describing

field penetration in massive higher-Z structures associated
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with plasma implosions but probably does not show the domi-

nant features of field penetration versus field push in gas

puff plasmas.
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CHAPTER V

SUMMARY OF PART I

This half of the report describes a simple "scoping"

code for describing imploding plasma radiators, scaling laws

for energetic radiation from imploded plasmas, and an effort

to model the nonlinear field penetration in the early stages

of plasma implosion, as the plasma heats.

RUNIN CODE SUMMARY

Runs WIRES (optional), then BRIDGE (annular plasma),

then SQUEEZE (pinch phase).

A. WIRES

1. Evolves position, size, temperature and current for N

identical wire plasmas.

2. Pre-BBE: wires fatten at sound speed.

BBBE: blackbody (BB) radiative cooling balances ohmic

heating, and with Bennet equilibrium (BE), determines

size and temperature of individual wire plasmas.

3.Wire centers move inward via F -ma, F determined by

current I/N in each wire (N wires, total current I) and

radius of centers rc Current I comes from given volt-

cJ

age V(t) via circuit equation including generator imped-

4. merge Condition: When wire plasmas touch.

Merge: Replaces wires by annular shell of same mass,

volume, temperature, RMS position and inward velocity.

,4~. 62
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B. BRIDGE

1. Evolves outer and inner radii, temperature and current I
of' a unif'orm annular plasma shell driven by V(t) via

circuit equation. Uses variable-timestep ODE solver

DGEAR to advance the variables.

2. In force equation, current is treated as if acting at

outer surface.

3. Inner radius evolved approximately by moving away from

outer surface at a speed related to the sound speed (as
one possible model).

4. Quasi-transparent radiative cooling (limited by black-

body rate), and ohmic and compressional heating, not

necessarily in balance.

5. Keeps log of integrated radiated energy loss and ener-

getic photon loss.

6. Closure condition: inner radius < 10- 6 cm.

Closure: set inner radius to zero and go to SQUEEZE,

" passing it the outer raduis, velocity, temperature,

current, etc.

C. SQUEEZE

1 1. Evolves compression of uniform plasma cylinder driven by

. voltage V(t) and circuit equation, including quasi-

--. transparent radiative loss. (Uses DGEAR.)

2. Self-similar motion, driven by force at surface.

3. Temperature equation includes compressional, decelera-

tion and ohmic heating, and quasi-transparent radiative

cooling (limited by blackbody rate). As elsewhere,
. ionization state is controlled instantaneously by tem-

perature.
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4. Continues log of integrated radiative energy loss (Y

and energetic photon loss (Y>).

RADIATIVE SCALING LAWS SUMMARY

Assumptions:

1. Almost all the interesting radiation occurs during the

pinch phase.

2. The plasma is uniform (including isothermal).

3. Interesting radiation is transparent and instantaneous.

,l Power Prad - lrr 2 L n2 g(T), where n - ion number density,

T - electron and ion temperature, and g(T) is a known

* function (e.g., from the NRL model).

S4. Perturb about adiabatic (nonradiative) compression.

5. Initial pinch conditions depend on history of the annu-

Ia- plasma and wire plasma stages.

6. Current I is used (in lieu of voltage) as a scaling

variable, since the compressional forces depend on 12.

Fundamental Formula:

> t g T ) 2(in/ini fg(T(t))dt- 0ir (t)dt 7 -r2. r (t)

since n (ml/m )/(nr 2 ). Here Y is the time-integrated
,.

energetic-photon yield, t is the pinch column length, r(t)

is the outer radius of the pinch cylinder, T(t) is the tem-

. perature, g(t) is the known radiation function, n(t) is the

ion number density, m is the total load mass and mi is the

mass of one ion.
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Fundamental Approach:

1. Radius r(t) and temperature T(t) are given to first

approximation by adiabatic compression. (Perturb about

this.) Compression is driven by b - 1 2 /m, assumed

nearly constant during the pinch phase.

2. Find conditions maximizing Y and show how they scale

with 1 2 /m and initial conditions of the pinch, to low-

est order (quasi-adiabatically).

3. Extend to next order in non-adiabaticity.

Primary Results:

1. There is an optimum value of fI1/m for any atomic ele-

ment:

o (A 300 t cm pk (keV)A-1 ]1/2 [II.46J
"'IoptMA 30 [ (L)Tp

where A=e,/b+ln(Tpk/Tj) depends on initial conditions,

and Tpk is the maximum of the given g(T) curve for the

element. E, is the kinetic energy at the beginning of

the pinch stage, and is roughly proportional to b:LII/m.

"*[ 2. If LI/m is chosen to have its optimal value, Y can be
expressed as a function of either u=m/i or I. Doing the

-"former,

Y > (J) 0.21 2 (T /T N12[r (cm)VT1 (ev)
1

opt p kI

[10 gpk (W cm )]A - [III.49]
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where Am is the atomic mass number (a.m.u.), K is a

dimensionless number of order unity (see text) and N is

a constant or order 1/2, related to the adiabatic index.
p-C -1 4(If T/T, - (r/rl) , then N 2C 1.)

3. If one chooses to express Y in terms of I rather
opt

than V, one finds Y I to zeroth order in the r.
opt

radiative loss. This agrees with observations and

simpler scaling models 
8

4. In the next-order approximation, where radiative energy

loss is a non-negligible perturbation of adiabatic be-

havior, Y falls below i2 or 1" scaling. The ratio of'>Opt
Y to the peak thermal energy content of the load is a

natural scaling variable if the pinch phase is hot

enough for energetic photons to dominate the radiative

loss rate. Let this ratio be called Y. Then to first

order in Y, the minimum radius (peak compression) of the

pinch is unaltered, but the peak temperature is lowered

by a factor

exp -(Y/2)F [III.79]

where F depends on the adiabatic index C and on the peak

temperature. A higher current is thus needed to reach

the optimal radiating temperature than in the quasi-

adiabatic limit, and this translates to a scaling slower

than u= or I at large I or .

NONLINEAR DIFFUSION SUMMARY

For a noncompressing plasma in radiation equilibrium

(i.e., where ohmic heating is balanced by radiative cool-

ing), we examined classical field penetration, affected by
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the changing conductivity of the plasma as it is heated by

the penetrating field. This diffusion, in a medium where

the diffusion coefficient depends on the field, shows quan-

titative differences from the usual constant conductivity

-" field diffusion problem. The differences depend of course

on how the conductivity changes with field, and this in turn

depends on the radiative properties. Field diffusion in

Argon with a Gaussian density profile peaking at 101' -

102 0cm- 3 and with temperatures 50 - 150 eV was modeled with

a ID nonlinear diffusion code. Although conductivity build-

up in the plasma somewhat steepened the diffusion front, the

foot of the field profile moved more rapidly than for the

constant a case because the conductivity and temperature are

low near the foot. This study may have some applicability

to the early-time field penetration in gas-puff plasmas, and

to the location, thickness, and freezing-in of the current

layer, although in the real situation plasma compression

(not modeled here) is probably equally important.
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PART II

CHAPTER I

OVERVIEW OF THE ELECTRODIFFUSIVE MHD MODEL FOR THE

IMPLODING PLASMA RADIATOR

Present efforts in the modeling of imploding plasma

radiators are centered on the study of electrodiffusive,

radiatively coupled MHD theory as the basic tool needed to

understand the role played by each of the plasma properties

in shaping the implosion trajectory, emission profile, and

radiation pulse observed in the laboratory. The primary

points of interest in the plasma behavior are two-tempera-

ture effects during compression, chemical potential and

ionization profiles, thermoelectric effects on axis at as-

sembly, and the modes of current penetration. The main

points of interest in the interaction between the plasma

load and the diode are the validity of the diffusion approx-

imation, the structure of the plasma-to-vacuum transition,

the fraction of power absorbed by the load relative to that

reflected, and the resolution in spacetime of various

sources of reflected power. Of equal interest is the devel-

opment appropriate computational techniques and software

with which, first, to answer these questions and, then, to

admit a smooth extension onto a much wider application do-

main. In order to obtain this kind of capability it is

necessary (I) to select carefully the minimal set of fields

to propagate, (ii) to optimize the time integrations with

respect to the number of derivatives needed, and (III) to

encompass a wide dynamic range in number density and radius.

All of the considerations just set forth interact and usual-

ly conflict to some degree. Moreover, as shown in later
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sections, the acute nonlinearities in the physical theories

both help and hinder various aspects of the task. The pre-

sent means to all these ends is the implosion code ZDIPR (Z-

Driven Imploding Plasma Radiator); the remainder of this

chapter is devoted to a summary of its evolved configuration

and performance over the past year.

A. ARCHITECTURE OF THE IMPLOSION CODE

ZDIPR may be rationally subdivided into three major

subroutine groups - the physics package (FLUIDOTS/TETDOTS),

the mesh integrator (GRIDROOT), and the subcycle integrator

(GEARBOX/TETGEAR). The major portion of the code and the

notation appearing in later discussions have been documented

in Reference 1, referred to as the "original formulation"

for the remainder of this report. The present discussion is

intended to be a topical updating of specific points, al-

though some recapitulation is included.

(1) The physics package consists of a plasma model and a

field model. The plasma model employs both ion and electron

temperatures, a radial flow field and complete, fully magne-

tized transport coefficients. Theromelectric fields and

heat fluxes and appropriate drift speed limits on J have
been included from the outset, and flux limits appropriate

to thermal conduction and possible thermoelectric deficien-

cies have been added. The equation-of-state and radiation

package is a faithful mimic of CRE results for ionization

states and chemical potential, and utilizes a four frequency0
bin "probability-of-escape" radiation transport scheme. The

field model discussed and explored here is the electro-

. diffusive option, which is a good first approximation when

T2
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detailed balance of incoming and outgoing waves does not

fail. The presently evolved forumlation also has the sin-

gular advantage of checking its own validity.

(2) The mesh integrator is now a new continuously-

variable-step predictor/corrector accurate through second

order. Corrector convergence is achieved through regula-
-8

falsi or replacement to high precision (10 ). This purely

iterative convergence scheme eliminates the need for a mesh

Jacobian and the attendant machinery for factoring and sub-

stituting, in contrast to the present subcycle integrator.

(3) The subcycle integrator (TETGEAR) for the electro-

diffusive option requires as input, at various t in the

subcycle, the material derivatives generated by the physics

package (TETDOTS), which in turn requires the advanced mesh

and velocity fields generated at t by the mesh integrator

(GRIDROOT). Each derivative call by the subcycle integrator

thus requires a full update of the mesh to the intermediate

time point--the primary motivation for the continuously

variable step integrator.

This sort of subcycle derives from the observation that

a spacetime p.d.e. which has the derivative operations re-

presented by discrete differences on one domain of depen-

dence appears as a coupled set of o.d.e. on the orthogonal

domain. The particular case here is that of spatial differ-

ential operators, corresponding to finite difference opera-

tors (derived through conventional or smooth interpolants),

producing a set of coupled equations on the time domain. In

all such cases the coupling of the time derivates is expres-

sed as a Jacobian matrix, implicitly dependent on the mesh

used to discretize the spatial derivative operators. Here

the time derivatives are the material derivatives fTe'

3
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e zand the underlying mesh motion [r r, , iis
completely transparent to the subcycling algorithm.

e ...e a total of 3-J initial/boundary value
cej

E based on the circuit equation appropriate to thec j
particular diode being modeled. In the environment seen by

TETGEAR, the problem is specified completely by the input
t-Y the interior material derivatives (tYe the coupling

matrix (ai /ay and the intermediate time points T.
i ,jThe combined fluid evolution subroutine HYDROPUSH incor-

porates the three foregoing elements and forms the nucleus

of ZDIPR-apart from startup, diagnostic and graphics mod-

ules. HYDROPUSH is concerned exclusively with the advance

of <FLUID-STATE> over the variable major time step which it

selects as appropriate. The only required inputs are the

common blocks <FLUID-STATE> and <FIELDADVDATA> (containing

the previous time slice of fluid variables and field vari-

ables) and the appropriate mesh dimension, scale factors and

physical constants, obtained from a variety of sources. The

output is an update of <FLUID-STATE>, and an increment of

the variable MSI (Main Step Index) by 1. If a restart file

is desired, it is created for later use and assigned a rec-

ord number equal to the MSI. If any severe errors occur in

the advance, dump files are created to allow examination of
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intermediate results, and a variety of reports at intermedi-

ate phases of the calculation are available as general

diagnostics.

The sequence of processing begins by reading elements of

the <FLUID-STATE> into <MESHADVDATA> and the subcycle vector
{iy }. Once the appropriate data base is inferred a full

o. p

complement of material derivatives is computed, by FLUIDOTS/

HERTZDOTS or in the electrodiffusive mode by TETDOTS. These

material derivatives are then used by STEPPER to select a

major timestep. For restart purposes, the environment of

either GEARBOX or TETGEAR is output at this point if re-
i+I

quested. Then a single subcycle is done (advancing Yj,
i+1 1+1;.r and and the new FLUID-STATE is output. The

iterative refinement of the mesh evolution is now accom-

plished within the calls to derivative module. The general

structure of'HYDROPUSH is illustrated in Figure 1.1; the

details of the timestep selection algorithms are discussed

in the original formulation.

B. MILESTONES AND ROADBLOCKS

To date we can report rather firm progress in bringing

two of the major subroutine groups into a state of develop-

ment which is adequate for the goals set forth above and in

the original formulation. The calculation of self-consis-

tent material derivatives is now routinely done to very high

precision. This capability is documented below in Chapter

II. A singular difficulty in obtaining this result was the

strong nonlinearity in the Brqginskii thermoelectric theory,

but this has now been tamed and at least partially under-

stood as a possible basis for corrections to that theory.
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FLOW OF A SINGLE SUBCYCLE: HYDROPUSH

I Input: V and (TE z e ] - Y at I-th time level I
r IIZ

Set major timestep: CFL, CELL AREA CHANGES, SURG

Output RESTART files, if requested

ENTER SUBCYCLE INTEGRATOR

(A] Set minor timestep, t.1

PUSH PREDICTOR: Yi+lg0

CONVERGE CORRECTOR: Y. (Y
i+l i+l

(B] Select JACOBIAN, call TETJAC or keep old one

Calculate iterated derivatives Yi+l,m (TETDOTS)

Advance and correct (GRIDROOT)

(r V J B) to selected convergence
r Z

Calculate final T.r

Calculate final Ir
Calculate final E with circuit

Model as the sole external driver

.Test step, order & error, recycle as necessary

"Recycle over minor timestep until major timestep is reached

Output the advanced set to the I+l time level, update r, V history.
r

Pp
-4' *

Figure I.1
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Also completely operational is the mesh integrator, documen-

ted in Chapter III. The development of these new integra-

tion filters grew from the great sensitivity of the subcycle

integration to the space-time jitter in the velocity field.

Their subsequent introduction in a fully implicit implemen-

tation has improved the quality of the model significantly.

The primary obstacle to efficient operation is the sub-

cycle integrator DGEAR, essentially unchanged from the ver-

sion supplied by IMSL. While the integrator DGEAR offers

several control parameters and considerable flexibility in

the integration scheme, the most useful options have been

the use of explicit Jacobians and the control of the local

truncation error through a variable TOL. The explicit Jaco-

bian is the most favorable option in this hydrodynamic ap-

plication; but, since the physics detail in ZDIPR demands a

very expensive analytical evaluation of this matrix, an

estimate based only on finite differences is needed. We

find that the choice of the differencing algorithm is a

sensitive one relative to subcycle integrator performance.

The variable TOL provides a natural and consistent means of

specifying time integration parameters, but it does not

split up into separate error bounds for truncation and cor-

rector, and this causes trouble. The integration scheme can

be selected as either an implicit Adams method of up to

twelfth order or a backward differentiation method of up to

* - fifth order (Gear's stiff method). Both methods are of the

implicit linear multilevel type and require the solution of

an algebraic system at each interior (subcycle) timestep.

4.0 Here the optimal choice between the two seems to fall to

Gear's stiff method. The motivation for its use-treatment

of stiff terms in the heat and field diffusion equations-

-  therefore appears well grounded; but the error estimates the

,., . -. . ......-. . ,, . . ...................................................... ,.. 77
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step size controls, and the dependence on a Jacobian matrix

(and its inverse) for corrector convergence appear to con-

tain some systematic and serious difficulties in this appli-

cation. The problems are being addressed by a variety of

alternatives and the resolution of these questions will be

best assured by careful further testing.

Despite the difficulties in obtaining efficient integra-

tion, the model can be fruitfully applied in short simula-

tions. Chapter IV describes the results of one such calcu-

lation meant to examine the early boost phase of the plasma

implosion.
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CHAPTER II

SELF-CONSISTENT CALCULATION OF THE MATERIAL DERIVATIVES

(FLUIDOTS/TETDOTS)
= -.

A number of modifications to the original formulation

have been necessary in the course of the code development

over this contract year. These changes have been motivated

primarily by the need for high precision in the difference-

equation image of the time derivatives. The better resolu-

tion of the global couplings (in space) for each temporally

evolved quantity, as provided by this high precision, has

been found very helpful in improving the subcycle

integration.

A. STATEMENT OF THE PROBLEM

The physical content of this model has been laid out in

the original formulation and in previous documents. How-

ever, in order to clarify the present discussion, the major
.p

-[ fluid and field evolution relations are summarized below for

the electrodiffusive limit that has been the central focus

of recent efforts. The notation is unchanged from that
introduced in the original formulation.

If one gives up some information concerning the details

of the diode fields and makes the assumption that the incom-

. ing and outgoing wave components are in detailed balance,

* then the Hertz wave equation can be transformed to a diffu-

sion equation

79

i .~ ' f. . ." .", ."-": , ." " ' . ,• ." -.* LL §-''-'IC UL Li~ .- - X'i.* -'. , - J- . ." ' ". -.- ". . ."."-"-. .'- ,.-



D E - 1 a uE
[u au uEj - EatIn Z-EaEth-Bao, [11..1]

where Eth is the dimensionless thermoelectric field, E is a

dimensionless conductivity, 8-Vf id/c, E'=E + SB,E - E +
BB + Eth and D/DT - + u .

! u.
The fluid response to the electromagnetic stresses and

heating is embodied in the relations

- T JzB pE
D2 T r rm m mcn I  mn

and
•D Tu )} ( n ) I,

D ee" -IT (V'V)+ {V'(e a T )+V.(Bo Uz R ;n.
Dt e 3 e e r e A z 2 I

2m T -T
-( zE,) ( e) + Q [II.3a]

3p,1  z m IT Rad'

"D 2 (.+ 1 Y'v. 2me Te-TI

.T T (V.V) (i nl)- I r TI)+ g1  e EII.3b]
D3 1

In these expressions e = Te + 2/3T , i T + 1m I
+ ax me; leI is the thermal conductivity, Te the plasma

relaxation time, Er the ambipolar radial field (with p itsrP

"'""induced charge density), and Grad is the net (local)

radiative heating or cooling. The dimensional version of

fields are subscripted with a vector component; dimension-

less fields are not. The radial electric field is estab-

lished as a solution to an integral equation derived from

the radial component of Ohm's law. The drift-speed-limited

current condition is supplemented by a (nonlinear) change in

Z where the local E field requires it.
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The (nonuniform) time levels for any variable are index-

ed with a leading superscript; the Lagrangian fluid mesh is

denoted by r, and its material derivatives by a superscript-

ed dot (or dots). Spatial indexing is denoted by trailing

subscript and various cell-to-cell averaging operations are

denoted by an overbar or by angle brackets.

The data base for all the hydrodynamic calculations is

the common block <FLUID-STATE>, containing {NJ, iT ,
ige 'ir ,i }an i

e { rEz.}, the diffusing electric field.c e j c Z'j
An update of the <FLUID-STATE> and Ez is the central result

of a major timestep. The relationships among the basic

fluid variables on the Lagrangian mesh are illustrated in

Figure II.1. The simple two and three point area-weighted

differencing schemes for such a mesh were discussed pre-

viously. The numbers of cell ions [NJ) are a conserved

vector of ions/cm resident in the (compressible) cell [i,
Ir ], assuring strict particle conservation and a solution

of the equation of continuity limited in accuracy only by
ithe evolved values of ( r I. The elements of {N } are as-j.

signed spatial locations given by the cell center position

- (defined by the equal area point) Ir = (1/2( rj+2 +
,r1  )/2)1/2 *

In general, at any point t (selected by the subcycle

integrator) within the subcycle [tlo,thiJ, one must map
*DI * * I* *. *.0

t, T E z, ej E e } in such a way that
c Ij c c ej j Ij-c cJ * c ej

the intermediate fields { r V B J I are all
J rj c 8,j zj

consistent with one another. Only the time can enter as a

" generator of r and Vrj, however these fields are

calculated, because of the Lagrangian nature of the mesh.

The calculation of these position and velocity coordinates

is discussed in Chapter III and they will be

- .."
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considered given for the remainder of this discussion.

Although the V ,and B calculations must be considered
rj c Oj

coupled problems, a magnetic field calculation ffrom any

given velocity profile is the pivotal element in achieving

the desired self-consistency.

Boundary Variables: Centered Variables:. N.i

'i ( ii (t), Fj()T t j ci

CCoa

rr

ha, a,+, h< it

C 0 Mesh J+

Spacing
Notation

Figure I1.1. The Lagrangian Fluid Mesh.

B. THE MAGNETIC FIELD COMPUTATION

If the mesh and its velocity are presumed given, or at

least provisionally established subject to iterative refine-]

ment, then there is just one magnetic field profile (and its
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curl, the current density) which is compatible with this

mesh and the input electric and temperature fields. Because

of the great sensitivity of the transport coefficients (in

this often highly magnetized model plasma) to the value of
*

B the stability and accuracy of the fluid integration isc ej *

improved considerbly as the resolution of cB is improved.

This calculation however always introduces a nonlocal

constraint into the model.

For the plane parallel waveguide, one may derive either

electric or magnetic diffusion relationships from the Hertz

potential wave equation in the limit of detailed balance

between incoming and outgoing waves. This limit is also

equivalent to the neglect of displacement current relative

to conduction current. Because both E and B are solenoidal,

the resolution of the "companion" field (E when B is diffus-

ed, B when E is diffused) always involves the calculation of

the field from its curl. It is this calculation which pro-

duces the nonlocal constraints that supplement the local

diffusive evolution relationships. Whether one chooses

electric or magnetic diffusion, it is easy to see that this

nonlocal constraint is always equivalent to a single inte-

gral equation.

Turning first to magnetic diffusion, the evolution rela-

tion

D 1 -1-B6 = (-{u u(uu B )-Ea in Z - B 3 u -u E t[1.4]5_ i u uO u a ur u th

is obtained by recovering the curl of Ampere's law from the

Hertz potential wave equation, writing J=£Braginskii E, and

eliminating a E. The fields B, 8r, E, radial coordinate u,

time T, and conductivity Z are in the dimensionless
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form of the original formulation. The contribution required

from Braginskil's kinetic theory and transport coefficients

is the constituitive relation

z = E(Ez BrB0 + th ) -E , [115]

where Z and Eth are functions of B and the plasma relaxa-

tion time, T e . On its face [II.4] is a fully local rela-

tionship, but one needs a complete profile E (u) given at

all times in order to calculate the material derivative on

the left. Since B8 and azB are the only fields available

one must use Faraday's law to obtain Ez (u)-fdO(3 B ), a

nonlocal operation. This forces one to solve an integral
equation for D/D Be, viz. [11.4] is now an integral equa-

tion for the spatial profile of the material derivative.
The value of D/D Ba at u-u, depends upon the values estab-

lished on the domain (o, u,) through the field E z(u). Be-

cause [11.4] is in fact equivalent to Ampere's law, however,

to solve it as an integral equation is to establish that
''' profile J z which satisfies the constituitive relation

II.5]. The only difference is that it is D/D B. , rather

than J itself, which is adjusted to obtain agreement. Onez

can equally well view II.5] therefore as the integral equa-

tion being solved in a magnetic diffusion calculation; the

two are equivalent, interchangeable problems.

For electric diffusion, on the other hand, the evolution

relationship is derived by applying the Laplacian to the

Hertz potential wave equation, eliminating the 3 2V 2 Z

contribution, and introducing [II.5] as the constituitive

relation. The evolution relation obtained,

D 1-E.- (u- u u3E )-E; In Z 3 E -B a 11.6]
%. 57 -Z -- .- u-.... . th- .- •r
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is equivalent to [11.4] in all respects. The nonlocal con-

straint however now enters directly in the form [II.5] be-

cause the additional needed profile is now B 8 which must be

evaluated from its curl, 4niJ, so one must solve [II.5] as an

integral equation in order to estabish the profile DE /D
Z T.

-. Having established [II.5] as the needed integral equa-

tion for either form of the field diffusion theory, it is

natural to ask whether or not a particular constituitive

relation, in this case Braginskii's, poses a soluble problem

in the practical context of a known discrete mesh, and given

discrete images of the input fields. If an accurate,

unique, and continuous solution cannot be established on a

given mesh then the constituitive relation is possibly in

error - for what [II.5] establishes is that a B field and

its curl, J, are related in a particular way. A result

well-known from first principles is that these fields are

related uniquely whatever the particular details imposed by

the medium; any ambiguity in the solution raises the choice

between giving up on a Lagrangian formulation or questioning

the accuracy of the constituitive relation.

Using Braginskii's notation (cf. Reference 2, p. 268

" (Eq. 6.18-6.20) and p. 249 (Eq. 4.32 and 4.35)) and casting

the remaining discussion in CGS units, the axial components

of the "Ohm's law" comprising [II.5] can be written

Jz E

E P -E + 08B + E [II. ]
z z r 6 th

E R
" th,z ene T,z

with the further reduction
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X- - (1.7588.10 7 "r ) B0 "

obtained when all the substitutions are carried out. The

coefficients B', B'1 , 6,, 6, are functions of the ionization

state only. When Ez Jz and B are all negative (the

usual convention in ZDIPR) or all positive, and 8r is

negative, the domains of positive T weaken the net field
r e

by opposing the applied Ez . The domains of negative rTe
z rTe

in contrast, strengthen the net field because E is paral-
th

lel to Ez. In this way the E tends to oppose, through the
Z. th

J component it induces, changes in the flow 0r arising from

the temperature gradient.

Using these results the basic constraint relation [II.5]

becomes

. I + X 2I0
z= %j e.ne, z r 8 e+( rTe) a 0 + 61 x2 + xII.9]

with B .. 2/cr fr(2wrJ z ) dr,, and x - -(1.758810' e) Bae 0  z emaking manifest its characterization as a nonlinear integral

equation.

C. APPLICATION OF THE CONSTRAINT RELATION

The nonlocal constraint requires in many cases some new

modifications to the field diffusion due to large and quite

possibly unphysical thermoelectric fluxes.

%i
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In a spatially inhomogeneous magnetoplasma the process

of radial implosion forced by axial currents produces radial

temperature gradients. These gradients feedback either

positively or negatively on the originating axial current

W ) by means of thermoelectric momentum fluxes arising inzr

the magnetized portions of the annular load. All such ther-

"* moelectric momentum transfers originate in differing mean

rates of electron (r-z) gyration (in the local magnetic

field) on the "up hill" and "down hill" sides of any phase

space point. As noted above, the explicit calculation of

these imbalanced mean fluxes constitutes a major contribu-

tion of plasma kinetic theory to the expected response of

the fluid J z(E z,B,Br ,T e ) in applied electromagnetic fields.

The constraint EII.9] discussed above can be viewed as a

check or any constituitive relation proposed from kinetic

theory (or another source). If one fails to find a continu-

ous and single-valued solution, then the proposed response

J (E ,Bo o $T ) is suspect or non-integrable. In the coursez .. r e

of testing the present ID implosion code (ZDIPR) the inte-

gral equation for J implied by Braginskii theory was ex-Jz

amined in this light and found to cause integrating failures

when large temperature gradients were encountered and when

thermoelectric fields began to add to the applied E . These* z
are unfortunately conditions which are quite common in the

. implosion solutions examined to date, and it was thus neces-

sary to find a remedy if any progress was to be made in the

physical understanding of the current penetration process.

S"-The failure in integrating Braginskii's theory manifests

itself in a multivalued solution of the J (rt) problem when
z

given a set of profiles (a(r,t), r (rt), T (rt) and
r e

E .(r,t)).
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IThis must be rejected immediately as a violation of

uniqueness and a closer examination shows that continuity in

the solution is failing as well. The net result is that for

a given non-uniform fluid mesh there always exists an upper

limit to the value of arTeI that can be admitted in calcu-

lating the thermoelectric fields, Eth, by any implicit

scheme over the spatial mesh. Somewhat less obvious is the
result that this upper limit depends on the radial flow r -

Braginskii's kinetic theory treatment completely decouples

8 r and Eth*

It is also easy to verify that the usual validity condi-

tions on Braginskii's theory are not violated when this kind

of failure arises. For example, in one ZDIPR calculation

the thermoelectric field was limited to -0.03 Eh Bra-
a wekly agneized (we~ ~~ -6

ginskii's on a weakly magnetized (WeT - )10 interior do-

main of the mesh in order to avoid multivalued roots for J

On this same domain, the Coulomb logarithm A-9.87; the ther-

mal gradient scale length L-0.2194 (cm) is large compared to

the mean free path L-4.795 x 10- 3 (cm); and the time scale

for temperature change T-3.35 6 (ns) is large compared to the
• -3
electron relaxation time Te -4.221 - 10 (ns). On another,

highly magnetized, exterior domain, the thermoelectric field

was limited to -0.0023 EthBraginskii in the presence of a

less stiff temperature gradient L -0.3518 (cm), and a very

small gyroradius r -.84 • 10 (cm). In short it would not

be possible to anticipate this failure on the basis of the

constraints on validity given by Braginskii. Even though

' similar kinds of limits to VTe apply in thermal conduction,

the problem here cannot be formulated with reference to only

one process, such as the formation of a heat flux in the

presence of a given magnetic field. Here the difficulty is
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not local, but global, and arises only when the fluid and

field models are coupled.

This limit on the practical integrability (to some reli-

able accuracy) of Braginskii's theory is a serious obstacle

to its inclusion in the implosion model. If one accepts the

theory as valid and resorts to an explicit integrator, then

the accuracy will suffer and color the results in a very

subtle way. If one modifies the Braginskii picture explic-

itly to prevent the problem and to allow the more accurate c
implicit integrator then the physical content of the model

may be hurt but the extent and degree of the inaccuracy is

known. The source of the difficulty is the very positive

nonlinear feedback of the thermoelectric field on itself,

and it is worth asking if this should be so.

If the nonlinear Braginskii picture of the thermoelec-

tric effect is in error as the temperature gradient in-

creases relative to 8r , the correct expression for E th must

contain the same symmetries, however it is derived. Since

the primary source of this effect is the thermal gradient,

one solution is to limit the momentum flux produced by this

gradient while not altering the gradient per se, in common

with similar treatments for heat conduction. Because the

magnetic field serves only to redirect the thermally gene-
_Ile rated momentum flux and to limit the phase space volume

contributing to the mean flux (sought as a source for Et),
th

a plausible model would be to replace C

E (- Te ) 8.(x)
th r e
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S.l

-. , with
- 1

E h F(- 3 Te) 8^(x),
izth e r e

where F is an odd, saturating function of l/e a rTe (the

basic measure of source strength) and x-weTe. In general F

must couple to the flow field 8 and to the external field
r

Ez . The product of separately odd functions, F(l/eVT ) andZ' e
B-(x), is preserved by the cross product nature of the

transport.

The general expectation one has for F is that it should

be linear for small values of the argument, and bounded

above for those situations where 1/e arT -9 *. The value
r.e

F(A) that constitutes this upper bound can be set from the

requirement that no multivalued roots occur in the local

response curve: J M a(E + BB + Et). In geieral one
z r8 th

would expect modifications in 0.(x) also, but the qualita-

tive form should be the same. At least the 6.(x) dependence

calculated by Braginskii provides a reasonably straightfor-

ward method for limiting F(A).

A complete and necessarily elaborate investigation of
this limiting effect is certainly needed, but it is a very

large effort. In order to achieve the new required coupl-

ings (to the mean flow 0r and the imposed E ) one must keep

more terms in the collision integral, retain some nonlinear

features, and probably include density gradients as well.

Such a calculation is most fruitful on a large scale, ob-

taining corrections to all the transport processes. The

* choice here, to limit the effective magnitude of DrTe, is ad

hoc but physically and numerically reasonable in the face of

such gross violations of the electrodynamic constraint3

discussed above. Moreover, this limit can be incorporated

'.+9
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smoothly into the other thermoelectric terms, viz. the
thermoelectric heat flux and the a E required in the elec-

r th
tric diffusion equation, and it can be extended easily to 2D

models. -

The solution of the integral Equation [II.9] proceeds

from the mesh interior outward, seeking to establish, from

the current densities already known, a local current densi-

ty, , as the next additional element in the solution

vector.

The limit is derived by constraining the

dJ
s B 8r Te) < 1,s P-- Ez', B e ,

where is the added local current density at any spatial

point, and J (E , Bay 0r, T ) is the response curve given by

the transport theory. The saturated amplitude for F(/eVTe )e
is replaced by (A/e) arT e and a value for A is calculated

from the constraint on J'. If this X value is in [0,1] then

the thermal gradient a T is limited to X a T in that
r e re

spatial domain for all thermoelectric effects. Limits on

the collisional thermal flux are treated separately in a

similar manner, and employ a different limit.

Once implemented, one finds that this limit arises under

conditions quite easy to interpret physically: (1) the

(ExB)r drift speed (from E XB ) in the given thermalr th,zx 8
gradient must tend to exceed the radial flow 8 ; or (2) the

r
thermoelectric E x B drift speed must exceed the local dif-

fusion speed of B and finally, (3) the thermoelectric

field must produce a positive feedback on the current in the

plasma. This is very much the situation upon closure of the

fluid annulus for example. Particularly interesting among

these criteria for the flux limit X is the involvement of
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the new E x B drift speed. It is therefore at least a plau-

sible conjecture that Braginskii's theory produces this

extreme and perhaps incorrect nonlinearity because the E thxB

drift is not properly included in the orbit integrals of the

Landau collision term-this collision term in fact neglects

all external fields.

These modifications to E have a significant impact on
th

the physical predictions of the ZDIPR model as well as the

numerical techniques required for either electric or magnet-

ic diffusion. The most significant physical result is the

level of enhanced current predicted on axis when the annulus

closes at high velocity. Under these conditions the (per-

haps small) initial value of b in the plasma interior is

amplified by the thermoelectric effect because the tempera-

ture gradient is negative and, since Ez and Eth are there-

fore parallel, a positive feedback on Jz is generatd by Eth.

This produces no more J • E heating because the thermoelec-

tric heat flux will tend to cool the axis, but it does tend

,~ to increase B near the axis and accrete incoming plasma on

a radially growing central filament because the resulting

J B stress rises to overcome the outward pressure gradient

V, force, which might ordinarily slow or reflect the incoming

plasma. Of course very large currents on axis tend to mag-

netically insulate those imploding regions just outside and

-.- soften the effect. In ZDIPR test runs with the modified E

,- - the axial current peak was still quite high but the cells

outside the ninimum in T did not tend to insulate as much
e

as before the effective temperature gradient was limited.

This produced a more persistent, narrower, and stable peak

feature in the current density profile and number density

profile, indizating a (quite reasonable) coupled compression
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%of particle density and current density. The thermal cur-

rent source simply tries to preserve the ratio B /n as the

plasma stagnates, a result familiar from magnetic diffusion

theory in the limit of high conductivity quite appropriate

to the hot axial plasma. Alternately viewed, the source

term - -B r in DB /Dt, tends to dominate the hot, stagnat-r re
ing plasma and requires current density to rise inside any

given radius in order to increase the B value at that radi-

us. In an electric diffusion solution this is done only by

generating a strong enough electric field to support the

needed J . and the hermoelectric field (properly limited as

shown above) is the source of this current until the corre-

sponding sources in the electric diffusion equation, viz.

- Et and -B2 8 can build up the "external" field suffi-
-. T Lth T

ciently to do the job. Such high axial current densities

are likely to produce anode damage in small areas corre-

sponding to the spatial extent of the central current fila-

ment. Their evolution is therfore a high priority in future

work.

A second physical result occurs at the exterior edge of

the annulus where the thermoelectric field tends to cancel,

rather than to enhance, the applied E. Here the limit on

a T is invoked during compression of the outer layers with
r e

A [0.800 --_ 0.900]. This is a consequence of the required

odd parity of F (1/e a T ) discussed above, because there is
r e

really no danger of multiple roots when T >0 and Br<0.
r e r

The limit here forces the plasma model to be less effective
in shielding out the applied E and can be expected to alter

i0 the all-important field penetration process when integrated

over the run-in phase of a typical implosion.
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D. PROCESSING SEQUENCE FOR THE MATERIAL DERIVATIVES:

FLUIDOTS/TETDOTS

When one combines the foregoing results with the re-

quirements stemming from the basic algebraic structure of

the derivatives, there remains very little latitude in the

processing sequence required. The first task is to estab-

lish the new mesh {ri, Vrj) and the second, the appropri-

ate magnetic field cB 84. These problems are both implicit

requiring the solution of a nonlinear system of equations

arising from the integration filters selected for space and

time. These problems are also both coupled, because cBej

depends on J (E # 0r , V and the mesh itself. As thec zj r e
only area of choice in the processing sequence, one has

therefore the option of nesting the iterations for V and
*r J
c B in one of two ways: velocity loop inside magnetic+ c ej

field loop, or velocity loop outside magnetic field loop.
4-."

Since the velocity loop is the most critical the present

implementation puts it outermost, the latter option. This

has several advantages for a subcycled architecture. First,
*

the most recent solution of the mesh problem { V rj at a

previous call becomes a good seed guess for the new source
configuration as well, since it combines all the information

about the system. In contrast, because the mesh is very

sensitive to the local JxB stresses, the new velocity solu-

tion can be far the previous one in the case of arbitrary

J which arises when the velocity loop is Inside the mag-c zj
netic field loop. Second the Jacobian of the mesh problem

*is more nearly band-diagonal if the magnetic field is assum-

ed given. In contrast, the Jacobian for the magnetic prob-

lem is lower-Hessenberg for a given velocity field. Third,
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the iteration of the mesh problem for fixed { T e
a * 0 ejC

E requires a fresh set of densities n , intermediate
zj *C Ij

velocities OP' thermal gradients, ionization states c~jv

and all active transport coefficients at each evaluation of

the acceleration. In contrast, the iteration of the

magnetic problem requires fewer fresh transport coeffi-

cients, constant densities and thermal gradients, and no

equation of state updates. Fourth, the mesh problem has

more latitude in the boundary conditions - momentum flux

being legislated only if the Lagrangian zone intercepts some

fixed wall or the origin in radius. In contrast, the mag-

netic field problem has a firm boundary condition at the

origin which determines the preferential direction of search

as the integral equation is resolved.

In view of the considerations just set forth, the compu-

tational advantages of putting the velocity loop outermost

are:

(1) fewer total iterations, because the mesh problem

can be solved by "corrector only" methods and the magnetic

-. problem resolves quickly for a wide range of "seed" fields

C zj'
(2) more accurate applicable matrix-based methods for

V because the banded Jacobians can be factored more ac-i- rJ

curately,

(3) fewer total calculations, because the intermediate

fields needed are fewer for the magnetic loop, and

(4) more efficient root searching because of the pre-

ferred direction of solution in the innermost loop.

These advantages translate into a fully self-consistent

solution of the velocity and magnetic problems in an average
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of 5 outer and 6 inner iterations for a total of 30 evalua-

tions of the derivatives D *rJ /DT and cJ , respectively.

The magnitude of relative error in the velocity corrector

solution is usually bounded above by 10 8, over all cells,

while that in the magnetic field corrector solution is

bounded above by 10 , nearly full machine precision. The

errors in the solution of these nonlinear difference equa-

tions can be driven to underflow if desired, of course, but

the experience to date is that this level of convergence is

adequate until the hydrodynamic timesteps can be lengthened.

Once the mesh and magnetic field problems are resolved

to a preselected error bound, the remaining tasks are readi-

ly performed in the order dictated by the fluid equations.

Working from the highest velocity moment downward, and from

the interior to exterior in position domains, the first

calculation is that for thermal sources and sinks (V - Vr

-z " Ez. Qphoto) "  This is followed by the calculation of

dissipative transfers using the flux-limited forms of the

thermoelectric and conduction processes recently developed.

From the foregoing, the material derivatives cTIJ and c9eJ

can be formed. The next calculation is an evaluation (if

needed) of D/DT V from the mesh configuration and
rj

appropriate sources; usually it is sufficient to accept the"*
last value evaluated in the root search for the Vrj

solution. Finally, the calculation of Dc*Ez/DT is done,
czj

using the acceleration field as a source term and coupling

self-consistently to the external circuit relation with a

relative error of 10 16. The final output is a very accu-

rate picture of these material derivatives.

2°-°9
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E. THE SPATIAL STRUCTURE OF CHANGE

.5 As an example of the kind of processes one must resolve

within the plasma load, Figures 11.2, 11.3, and 11.4 have

been extracted from the early phases of an implosion calcu-

lation. All three are depicted on the same spatial scale a

2.48 ns after the start of test calculation. While the

initial configuration was a strictly isothermal (25 eV)

Gaussian density and isoelectric (E -3 StV/cm) profile:.. z -6
expanding about r-0.55 at a low velocity (IarIl 5.0x1 >,
the later fluid state intercepted these graphs depicts a

velocity field (Br - Figure II.1) negative over most of the

domains and a strongly skewed Ez profile; with the outer

plasma field of 44.0 StV/cm on order of magnitude than orig-

inally given. Owing to the electromagnetic stresses, a very

slight crushing is distorting the outer domains of the orig-

inal Gaussian, while the interior domains begin to execute a

rarefaction fan in ignorance of the piston. The exterior

velocities have come down considerably and the electron

temperature on the surface is beginning to rise.

From this basic configuration {ni, Br , Ez, Te and T1 ), 2

Figure 11.2 is completed with the self consistent current

density profile as resolved from the integral equation dis-

cussed at length above. This structure is essentially bar-

ren of any thermoelectric effects and shows the early forma-

tion of a peak in Jz9 drawn in the domain where E z decays,

due to magnetic insulation effects. The peak value is typi-

cal of the current density one might expect in a stationary

plasma for these conditions and is contrasted clearly with

2. T (r) is not shown in Figure 11.2, being essentially
indistinguishable from Te (r).
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that current actually drawn as one finds more magnetic insu- {

lation in the exterior. Note also in this context coinci-

dence of the peak in J with the sharp negative excursion in
z

Br at r-0.67 cm. The relative magnitude of current densi-

ties interior to the main peak, and the more gentle downturn
A in magnitude over the interval [0.49, 0.61] in r, reflects

the same magnetic insulation process obtained for a gentler

velocity field gradient in a smaller interior IEzI.
The next graph [Figure 11.3] shows the spatial structure

of the important source terms in the electron temperature

equation. The radiative loss profile Qrad' being dominated K.

by thin recombination continiuum and Bremmstrahlung and

hence reflecting the density, is broad in space. It also

proclaims its thin character by exhibiting a mild kink where

the density compression is beginning. In contrast, the

ohmic heating profile QJ.E is clearly peaked at the inner-

most "insulation front" pointed out above; while, at the

exterior, the corresponding insulation front peak has blend-

ed with the general upturn in ohmic heating associated with

the high Ez , low density region, the so-called corona plas-

ma. At this point, therefore, the electromechanical shock

has just begun to emerge from the "vacuum" and to accelerate

the load. The structure of the shock heating profile QpdV. dV

clearly exhibits this, underwriting as it were, the wider

structure in the ohmic heating curve. The acceleration

profile IDVr/DtI completes the graph and shows a minimum

coincident with the slowest portion of the load. At this

minimum the contest between incoming E z with its attendant

J B stress) and the pressure gradient is played out; while

inside it, the rarefaction fan dominates the motion.

I
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When all these effects are included with the other dis-

sipative processes of thermal and electric diffusion the

* plasma response contained is that of Figure 11.4. The re-

maining material derivatives are shown and one can see read-

ily the various regions of change and the primary sources in

* each. Outside the slowest velocity (r>0.6), the ion and

electron temperatures are being driven apart by ohmic heat-

Ing, but both are rising due to compression and ohmic ef-

fects. In the dense interior, radiation and expansion are

* cooling the fluid, making field diffusion marginally faster;

but in the underdense interior a slight preponderance of

ohmic heating arising from the weak initial field begins to

warm the plasma. The material derivative of E ~, on the

other hand, shows the processes of field penetration. Just

inside the peak in J the primary source of incoming E~ is

i zA

the term - B) B0 , which represents an inductive recoil-

allowing more E to the conductor when the flow field rises
to produce more insulation. This recoil effect is superpos-

ed with normal diffusion and in fact dominates the peakE z
shown at r-0.65. On the exterior, where the gradient rar

and the gross acceleration are somewhat weaker, the dit'tu-

sive term proper is competitive as is also the cancellation

rate term E. ZnE; but at the shock itself the Eis moving

°.1

past the moving fluid predominantly because of the ac-

celerations it gives the fluid. As the velocity field is

boosted inward, it would appear that the E profile will
z

simply follow this acceleration front along and completely

penetrate the load.

In the calculation of this structure of change, it is

obvious that an accurate resolution of J Is central to all

of the important physics just discussed: the insulation
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front, the recoil source for and the regions of ohmic

heating. It is very important to know the interplay of all

the effects discussed above and to incorporate the non-local

character of the magnetic insulation process in the field

diffusion equation.

n-.
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CHAPTER III

THE INTEGRATION OF THE FLUID MESH TRAJECTORIES

In the original formulation of this implosion model,

correction of the mesh was intended to occur outside the

subcycle integration, allowing the explicit calculation of

mesh positions inside the subcycle derivative routine itself

for any input time argument. However, this scheme allowed

too much noise to enter the velocity profile because the

feedback from thermal to flow reservoirs tended to come too

late. As a means of controlling such noise one is naturally

led to a predictor/corrector scheme, of necessity fully

implicit. On the other hand, within a subcycle process, the

totally arbitrary time coordinate voids the use of customary

formulas for the mesh predictor/corrector because the time

levels are no longer evenly spaced.

A. CONTINUOUSLY VARIABLE TIMESTEPS AND FILTER THEORY

In order to address the problem of uneven meshes, con-
i-i isider a sequence of time levels (-t< t< t) together with

i-Isome corresponding velocity and acceleration values { u,i * i-I i *

u, U, a, a, a). The forward most time, t , can be

parameterized by a step size ratio

* i i i-I
-- ( t - t)/( t - t)

relative to the step fixed, defined in the history array, h-
i-1

,* t- t.

If one seeks an integrating filter of the form

i i-I * i i-I
. A0uA 1 u + h(cB 1 a+B 0 aB 1  a), [III.1I
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how can the five coefficients be related to the error char-

acteristlcs and the timestep ratio C? It is useful to ad-

dress this topic with a straightforward extension of the

transfer function as commonly defined in Fourier or z-trans-

form theory. Let the accelerations be limited to harmonic

components a- A eJW t-it) and seek a particular solution
i jw(t Inu- A e t- t), the filter is then charcterized uniquely

out
by the ratio

A out h(z' *B 1+ B 0 B1Z-in  z0 A A 1 [1.2]

where Z e j
A

h
-

For a perfect integrator [III.2] must equal 1/jw and the

selection of coefficients [A,, A,, B-,, B,, B,) must be a
compromise process which produces optimal accuracy and
stability as a function of the step ratio c. Let the phase

uwh be an expansion parameter and require that the perfect

integrator be approximated through some order in One

must have

cB- I z + B 0  + B I 1 I
J z -sA B AI z + E(O[c ]) [111.3]

1 -A 0 A 1 n

n
where the error term E is bounded by € , nZ3 if one wishes a

second order or higher integrator. Since z -e i C  the

sequential orders in C arise by expanding the right hand

side of 111.3 and equating real and imaginary parts. This

yields at each order a new element in the set of constraints

on the coefficeints in the formula, viz.

Oo; 0 -0 - - A1
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0. - ]: B0  + B - A1  + £ (1 - B_)

O ' 2 : B - B1  C 2 _ 2B - 1  E( - B_ 1 )

(2c + 3 - A1 )(1 + A1 ) - (1 -€)A2
OEOJ1: B_ 1 1C 1 A" . C€33: ]3-I6€(C -+ 1)(1 + CA )

These expressions already contain some eliminations,

e.g., A,, but as a set they specify all of the formula as a

function of A,. In the case that e-1 these constraints

reduce to a well-known class of formulas due to Hamming.

The new extension here is to arrange the theory in such a

way as to produce uniform truncation error (oE 3 ) in the

integrating filter for a continuum of timestep ratios e.

As in the fixed-step case, the choice of A1 represents a

trade-off between accuracy, stability and noise propagation.

The introduction of the ;4 constraint could provide a unique

function A,(e) but, after some investigation of the quartic

equation involved, it appears the real solutions with the

property A1 (O)-O may not exist. This property is importrant

because it assures precise continuity of the velocity value

*u forward from u, i.e., the filter collapses to an identi-

ty transformation as c--->0 when A, also vanishes. A second

point in favor of avoiding the ;4 constraint is that such

high accuracy usually pushes one onto the stability bound-

ary. In examining the present fomulas over the enZire Al/c

domain for those cases with A,-± and e-I, the response

curve showed a small imaginary part, corresponding to a

better approximation to the perfect integrator. These re-

gions are known stability boundaries for the fixed step

formulas of Hamming, therefore, such high accuracy can be

4,-
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traded here in order to guarantee stability. A third point

in favor of leaving A, free is the possible control of noise

propagation. A priori it is of interest to produce an inte-

grating filter with a sharp or even tunable low pass re-

sponse because the local hydro cell sizes determine those

frequencies too high to be physical. The choice A,(e) may

have some bearing on this question as well. The character

of the response curves will be discussed at more length in
- the next section.

The filters compared in later sections differ in only

one respect - the functional dependence A,(c). They are

arbitrarily designated Class A and Class B, representing two

qualitatively distinct types of integrating filter.

The Class A filter is generated by the rule A, = 0.25 c

and is characterized on (0<<1.2) by three features:

(1) coefficients of largest magnitude remaining posi-

tive for all e,

(2) cB_ uniformly smaller than B. for all c,

(3) B,>O over most of the c domain.

This particular filter does not mix a and a with equal

weights until e>1.2 and has ia predominating by a factor of

2 or more for e<1.

The Class B filter is generated by a more complicated

rule:

A = C-0.4 + 0.2 f(e)] "

with f(e) a smooth step function [O<e<1.2] bounded above by

1 and below by 0. This rule is selected to track, roughly,

a peak in the value of eB_ at small e until the maximum

blends into a general rise for e - 0.45. Thereafter the

rule keeps A, well above the stability boundary at -1 for
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-<1.2. In comparison this Class B filter is charcterized on

<e0< <1.2 by

(1) positive cB_1 for all c,

(2) cB, exceeding B, for larger e>1.05,

(3) B1 <0 over the domain studied.

Hence the Class B filter tends to use the history as a

derivative estimate for the surge (B,>O, B,<O), while the

Class A filter tends to average previous accelerations. The

following sections are devoted to the comparison of these

integration filters and to the implications of these results

for the hydrodynamic code.

B. RESPONSE STABILITY AND ACCURACY

If the transfer function is decomposed into real and

imaginary parts one obtains a picture of the propagation

characteristics of the filter on the frequency domain defin-

ing the time dependence of the acceleration, a(t). The more

useful object however is the scaled difference of the trans-

fer function from the perfect integrator 1/jw, i.e., H(C)

"al ' JCAout /A in . A comparison of Re H( ) and Im H(C) for var-

ous values of e (between the two classes of integrators

defined above) is a helpful summary of their differences.

The typical frequency response one finds is illustrated in

Figures III.(1-2) for the Class A integrator and in Figures

III.(3-4) for the Class B integrator. The plots show the

real part (R) imaginary part (I) and modulus (M) of H(C) at

* two values of e in each case. For c-1.1 the Class A formula
has a slightly broader pass band in the real part but a

flatter low frequency response. The Class A formula shows a

larger magnitude in the imaginary part for all , but this
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imaginary part is negative at high frequencies. For c-0.5

the Class B formula retains its rather slowly decaying low

* . pass character, while the Class A formula exhibits a mild

rise in the real part before assuming the usual downturn at

higher frequencies. Both integration filters have similar

negative imaginary parts. From this comparison (which per-

sists for all ) one might expect the Class A formula to be

slightly more susceptible to noise but more accurate and the

Class B formula to be more likely to propagate growing para-

sitic solutions due to the more positive imaginary parts.

A second analytic tool is the relative stability criter-

ia for each of the integrators. This test is somewhat limi-

ted in its scope because the root conditions apply only to

even meshes and, while solutions for c€l exist, the inter-

pretation is not particularly clear. The first root condi-

tion is independent of timestep and involves only A, and A,.

It requires essentially that the denominator of the transfer

, function possess no zeros for z>1. For the Class A formula

the roots at e-1 are z-(;.0, -0.25); for Class B, z-{1.0,

0.21. In both cases absolute stability is assured. The

second root condition involves the phase also and speaks to

the stability of propagated errors, the relative stability

of the scheme. Since phase values greater than 0.2 are not

likely to be used on a single step C-0.2 is taken as the

- phase in the test. The corresponding roots at c-1 for the

-.. Class A formula are z-[1.219, -0.22561; while for class B,

z-{1.221, 0.2091). Again in both cases, relative stability

seems assured with Class A perhaps a bit more stable as

expected.

-. *.It is a well-known result that stable consistent methods

... are convergent integrators for even timesteps. Certainly
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one expects this property to generalize smoothly for the

continuously variable step methods examined here. The best

kind of' test is therefore an integration of some known and

(preferably) relevant problem. For the integration of im-

ploding trajectories the natural test bed is the Gaussian

implosion a self-similar isothermal Cin space) fully time

dependent hydrodynamic flow. To summarize the fluid densi- .

ty, temperature, Lagrangian position and flow velocity, and

* acceleration are specified by:

.e 2  2 t

Nr r r ()

Twrt) =

1/2r(t) -r() U. (T) (for r (t) also), kIoIa

-1/2
-~t V(0) u (T) (at r(t)),

i -t a(0) u3/ CT) (at r(t)),

where the generating function

T + E1 + (0 Y E)T]
U(T) C III.5JY+1

E

depends on the initial velocity scale and kinetic to thermal

energy ratio,

T K t/2
i

Y 8 T0 /mr 2K27

K V(O) - 2/r (0) [111. 6 -
i 5

a(0) 2 T0 /mr (0).

1214
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The test consists in selecting K i  YE and, using the

filter [II.1] with V(t) calculated analytically from

[III.4-6], comparing the known velocity to the filter output

and the known position to the corresponding second intergal

of [111.1], viz.

i i
*r r + eh(*u + u)/2 [111.7]

This kind of check tests only the filter, the analytical

accelerations remove any errors propagated when the filter

is combined with some algorithm for corrector convergence

e.g., regula-falsi. A fully implicit scheme for this prob-

lem does exist and will be examined later if it is of inter-

est. As a second exercise the acceleration is perturbed by

a sinusoidal ripple, a-a (t) + 6sinwT. This allows a

check of the frequency response in terms of complete

throughput as opposed to the single-step analysis above.

The timestepping for these checks is controlled by a

relative tolerance for single step velocity changes which

progressively slows the step as the turning point is reached

due to ever-increasing accelerations. For very small toler-

ances the step usually sinks to a given floor sufficient to

limit the number of steps over a full implosion to about

30,000. The relative error in r and V is reported every 0.1

ns - Y and K being appropriate to 60 ns overall implo-
E i

sion/expansion times. The time supremum (in absolute value)

of r and V errors at full step, and 1/3-, 1/2-, 2/3-step

test subcycles is also accumulated on every push.

The results are summarized in Tables III.1 and 111.2.

The Class A formula is decidedly superior on all counts over

a wide domain in the implosion phase space (YE' Ki). The

Class B formula wins only in the suppression of very high
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TABLE 111.1

Gaussian Implosion Trajectory Integration

at Single-step 6V/V =5.0,10-

6x- filter analytical

Class A Class B

supy ( ) s up) (. (L) sup 6L)

t r t V r t V

(-0.2, 0.1) 2.10-10- 5.60*10 2 3.52-10-5 9.90.102

(-0.1, 0.1) 1.86-10- 6.87-10- 2 3.10-10- 0.121

(-0.1, 0.01) 1.01.10- 0.304 1.55-10- 0.553

(-0.1, 0.001)1 7.59-10- 0.558 1 .11.10- 1.137

SRelative velocity errors are dominated by the behavior near the turning

point, elsewhere they are comparable to (t6r/r).

TABLE 111.2

Noisy Gaussian Implosion Trajectory Integration

(K--0.2, Y= 0.1, Same Tolerance]

6-Noise Amplitude: 0.15

Ripple cycles! Class A Class B

timestep sup (t6r/r) sup (6r/r)

.0411 3.155-10- 9.31-10-

.8065 2.28-10- 9.92-10-~

4.032 4.14-10- 5.17-10-

8.064 1.75-10- 6.84-10-

43.20 2.93-10- 1.24-10-~

86.30 1.50.10- 1.83-10-
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frequency noise above the Nyquist frequency and hence of

only minimal interest. The Class A formula exhibits isolat-

ed resonances in this domain while the Class B first damps

them and then admits a single large one.
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CHAPTER IV

SNOWPLOW FORMATION -- THE BOOST PHASE

* At the close of Chapter II the spatial structures in the

material derivatives of temperature and electric field

pointed out some of the fundamental responses of a plasma

load to its pulse power environment. Following that same

example for a short time the present discussion focuses on

the evolution of the snowplow or magnetic piston as a pri-

mary feature of the run-in plasma. These thoughts are ne-

9. cessarily preliminary and such results as can be obtained

will be followed up in greater detail as the code's opera-

tion and efficiency are improved.

One can see the emergence of the snowplow most clearly

in the sequence of ion density and electric field profiles

shown in Figure IV.1. The configuration at 3.3 ns is

scarcely distinguished from the example of Section II.E at

2.48 ns except that the exterior field has now risen to

around 50 StV/cm. By 10.8 ns, however a new density peak

has emerged and the exterior domains are strongly crushed by

the electromagnetic stresses; the E field has followed the
z

compression and risen significantly in magnitude. The final

state, at 18.8 ns, shows the new density peak inside the

original and a signifcant distortion of the E profile withz
an exterior field of 167 StV/cm.

If one characterizes the Ez  profile by its half-

relative-amplitude point r1/2E' then this point is found to

move in quickly, successively overtaking comoving fluid

zones in response to the impressed sources for E In the

early times r1I2E is Just inside the budding or emergent new
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Figure .TV.1. Sequential density and field profiles.
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density peak rnpeak' while in the last configuration it has

moved well inside this peak. The slowest-velocity point

r Bmax and the half-amplitude velocity point (relative to

the outer surface velocity) r1 1 2 ^, are also seen to move in a

similar manner, overtaking the calculation zones as part of

a general acceleration or "boost" front which is propagating

through the plasma.

A more detailed graph of the model plasma at 18.8 ns

(Figure IV.2) shows the fully developed snowplow configura-

tion. The current density now peaks more sharply, at a

deeper radius and the width of the current carrying layer

has doubled over that in the intial state. The progress of

the boost front is marked by the slowest velocity point

(0.476 cm) as compared to 0.62 cm at 2.48 ns. In step with
this are both r 2E and r at -0.52 cm (in from -0.66 cm

thisare oth / ndE 1/20
at 2.48 ns) and the velocity profile for r>0.5245 cm is

flattened in conjunction with a quasi-equilibrium configura-

tion of the stresses. The ion and electron temperatures

show a peak at the location of the compression max'aui which

is in turn essentially coincident with the peak acceleration

and located just outside the boost front, cf. Figure IV.3.

The minimum acceleration magnitude lies inside the minimum

velocity magnitude as in the earlier graphs and both lie

inside the temperature peak associated with the shock. The

radiative loss profile (cf. Figure IV.3) now reflects this

in its triple peak: the interior peak in Te, the density

maximum, and the product of decaying density and rising

temperature in the near corona. It is still dominated by

*thin continuum and Bremmstrahlung.

The field penetration process is still dominated by the

recoil mechanism -(0 0 )Be at the boost front but is given
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by a mix of effects inside and outside this point. The

configuration of J, E, and B has not changed its character
r

-' since its formation at early times, cf. Figure 11.2. The

structure in the vicinity of the field decay radius rl/ 2 E is

just moving across the plasma load dragging the E' field

inward at a rate fast compared to that of pure diffusion.

Spatially the penetration can be characterized by an

invariant ordering of radii with perhaps time dependent

relative separation among them. Innermost is the minimum of

acceleration magnitude r next outermost the minimum
maxi;

flow speed rmaxB; followed by the field decay radius r1/2E

and completed by the onset of quasi-equilibrium flow rQSV ,

The J profile and the velocity half amplitude r 12B tend to

oscillate around rl,2E, so that no one ordering of these

radii is appropriate.

The onset of quasi-equilibrium flow at r can be ex-

pected to continue into the corona plasma. The linear equi-

librium near rQSV arises when V(nT)-oB(E + E + BB); the

saturated equilibrium will onset when 7(nT) -B • enecs

obtains as E grows in the "vacuum" region and OB is held toz p
moderate levels by the cap Il < IBQsl and the saturation of

J at larger radius. The complete ordering of radii,
z

apparently invariant during the early run-in or boost phases

is then {rmaxi < rmaxB < I/2E < rQSV < rCorona The

calculation of the equilibrium density profiles falling on

this domain may prove a valuable modeling asset both in

simple applications and in the smoothing and rezoning of
implosion problems. In this connection however it is worth

noting that the full nonlinear complexity of the thermoelec-

tric field must be included as can be seen in Figure IV.J4.
Any such calculation of a quasi-equilibrium [ni, B, J} given

B, )12
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typical (Te, B, E will find Eth a 30-50 percent effect as

one approaches the corona. Note also the impact of the

thermoelectric field on the structure of E. The main peak

in E is due to recoil and diffusion; the inward foot is

mainly due to recoil; but the outer wing comes from 9 E*r th
and the magnitude of the effect is beginning to approach the

saturated or flux-limited domain (discussed in Section II.C)

at the outer radius of this calculation. One may perhaps

take some consolation in the fact that the saturated domain

of E does not have a great impact on E but the thermo-
th

electric effect is rather important in these plasmas.

The completion of this rapid penetration of E into the

plasma load has not yet been calculated but the limiting

factors will be the disappearance of the'sharp gradient in

velocity and the weakening of the accelerations generally as

the insulation front is allowed deeper into the load. If

what occurs here is corroborated by wider numerical exeri-

ence then a general picture of the boost phase of a run-in

can be formulated. One would expect an early field pene-

tration determined by a contest of rates and the initial

density profile - E (with J peaked at an insulationz z

front) will penetrate the load until the local velocities of

the interior are comparable to the outer surface. At this

time the penetration will become mainly diffusive - at rate

characteristic of the radiatively cooled interior plasma not

the hot corona however. When .the penetration settles down

into diffusion, the width of the effective current carrying

layer may be quite large although the stresses may not be

reduced proportionately because of the peaked nature of the

J profile near the insulation front. The investigation of

this process is therefore a high priority for future work.
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CHAPTER V

SUMMARY OF PART II

In the foregoing discussion, the structure and perfor-

mance of the electrodiffusive model of a 1D imploding plasma
radiator has been detailed. Some modifications to the orig-

inal formulation have become necessary in order to achieve a

self consistent picture of the fluid motiu,, and more modifi-

cations are clearly needed to the integration package in

order to obtain a useful performance with respect to DNA

objectives.

On the methodological side, a new integrator for the

fluid mesh has been developed and applied successfully to

known trajectories. Certain discretization difficulties in

the Braginskii thermoelectric field model have been identi-

fied in the context of E-field diffusion and removed by the

* development of a simple flux limit on the thermal gradient

used as a source of this field.

From the physical standpoint, the novel E-diffusion

formulation has shown a sensible performance over short time

intervals and resolved some fundamental features of the load

acceleration processes in a speculative but plausible init-

ial condition for present DNA sponsored experiments. The

novel equation of state involving generalized electron tem-

perature e has been shown a useful formulation as well.
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